Artificial Intelligence-Powered Pediatric Dentistry: A Glimpse into the Future
Creators
Contributors
Researchers:
- 1. Department of Pediatric and Preventive Dentistry, People's College of Dental Sciences & Research Centre, People's University, Bhanpur, Bhopal (Madhya Pradesh)
Description
ABSTRACT:
The rapid digitalization of various aspects of life has significantly transformed dentistry, improving the
quality of dental care through advanced technologies like artificial intelligence (AI). AI, which
replicates human cognitive processes, has revolutionized dental practices by automating time-
consuming tasks and offering precise diagnostics and treatment plans. Despite being in early
development stages, AI in dentistry signifies a disruptive technology poised to redesign clinical care.
Innovations such as CAD/CAM systems, intraoral imaging, and digital radiography illustrate AI's
applications in caries diagnosis, implant design, etc. Historical milestones, from conceptualization of
AI to advancements in machine learning and neural networks, have paved the way for sophisticated AI
models used in various dental specialties, including pediatric dentistry. AI's potential extends to patient
education and practice management, promising a future where dentistry is increasingly efficient,
accurate, and patient-centered. This review highlights role of AI in pediatric dentistry with special
mention of review of literature.
Files
Dr Adiya Taiwade Final Article with QR.pdf
Files
(709.9 kB)
Name | Size | Download all |
---|---|---|
md5:f0b31ed3eea7c2182f4e0f46f56f7352
|
709.9 kB | Preview Download |
Additional details
Dates
- Accepted
-
2024-04-29
References
- 1. Ekici O. Introduction to Artificial Intelligence- st Wolfgang Ertel. 1 Edn. Springer Publishing Company, Incorporated.https://www.academia.edu/48943579/Int r o d u c t i o n _ t o _ A r t i fi c i a l _ I n t e l l i g e n c e _ Wolfgang_Ertel.
- 2. Shan T, Tay FR, Gu L. Application of Artificial Intelligence in Dentistry. J Dent Res. 2021 Mar;100(3):232-244. https://doi: 10.1177/00 22034520969115. Epub 2020 Oct 29. PMID: 33118431.
- 3. Khanna SS, Dhaimade PA. Artificial Intelligence: Transforming Dentistry Today. Indian J Basic Appl Med Res. 2017 Jun;6(3):161-7.https://www. ijbamr.com/assets/images/issues/ pdf/June% 202017%20161-167.pdf.pdf.
- 4. Bhatia AP, Tiwari S. Artificial Intelligence: An Advancing Front of Dentistry. Acta Scientific Dental Sciences. 2019; 3:135-8.https://actascientific. com/ASDS/pdf/ASDS-03-0714.pdf.
- 5. Khanagar SB, Al-Ehaideb A, Maganur PC, Vishwanathaiah S, Patil S, Baeshen HA, Sarode SC, Bhandi S. Developments, application, and performance of artificial intelligence in dentistry - A systematic review. J Dent Sci. 2021 Jan;16(1):508-522. doi: 10.1016/j.jds.2020.06.019. Epub 2020 Jun 30. PMID: 33384840; PMCID: PMC7770297.
- 6. Rajaraman V. John McCarthy Father of artificial intelligence. Reson. 2014:198e207.https:// www.ias.ac.in/article/fulltext/reso/019/03/0198-0207.
- 7. Spielman, AI. Technology in Dentistry, Through the Ages. NYU. Available online: https://dental.nyu.edu/ aboutus/history-ofnyucd/ technology-in-dentistry- through-the-ages.html.
- 8. Ahmed, MS, Chaturya K, Tiwari RVC, Virk I, Gulia SK, Pandey PR, et al. Digital Dentistry-New Era in Dentistry. J. Adv. Med Dent. Sci. Res. 2020, 8, 67–70.doi: 10.21276/jamdsr.
- 9. McCulloch WS, Pitts W. A logical calculus of the ideas immanent in nervous activity. 1943. Bull Math Biol. 1990;52(1-2):99-115; discussion 73-97. PMID: 2185863.
- 10. Poulton MM. A Brief History. Oxford: Elsevier Science; Handbook of Geophysical Exploration: Seismic Exploration, Vol. 30, 2001, p. 3-18.https:// experts.arizona.edu/en/publications/chapter-1-a-brief- history.
- 11. Newell A, Simon HA. Computer science as empirical inquiry: Symbols and search. Commun ACM 1976;19:113-26.https://doi.org/10.1145/360018.3600 22.
- 12. Schwendicke F, Samek W, Krois J. Artificial Intelligence in Dentistry: Chances and Challenges. J Dent Res. 2020 Jul;99(7):769-774. doi: 10.1177/ 0022034520915714. Epub 2020 Apr 21. PMID: 32315260; PMCID: PMC7309354.
- 13. Ho Y, Bryson A, Baron S. Differential games and optimal pursuit-evasion strategies. IEEE Trans Autom Control 1965;10:385-9.http:// dx.doi.org/10.1109/ TAC.1965.1098197
- 14. Bryson A, Ho Y. Applied Optimal Control: Optimization, Estimation, and Control. New York: Taylor and Francis; 1975.
- 15. Jackson P. Introduction to Expert Systems. London: Addison Wesley; 1986.http://www.sci.brooklyn. cuny.edu/ ~dzhu/cis718/preview01.pdf
- 16. Shortliffe EH, Buchanan BG. A model of inexact reasoning in medicine. Math Biosci1. 975;23: 351-79.https://stacks.stanford.edu/file/druid:ts764ph5 106/ts764ph5106.pdf
- 17. Michael H& Andreas K. A Brief History of Artificial Intelligence: On the Past, Present, and Future of Artificial Intelligence. California Management Review. 2019; http://dx.doi.org/10.1177/0008 125619864925
- 18. Nguyen TT, Larrivée N, Lee A, Bilaniuk O, Durand R. Use of Artificial Intelligence in Dentistry: Current Clinical Trends and Research Advances. J Can Dent Assoc. 2021 May;87:l7. PMID: 34343070.
- 19. Delua J. Supervised vs. Unsupervised Learning: What's the Difference? 2021. url: https://www.ibm.com/ think/topics/supervised-vs-unsupervised-learning.
- 20. FDI. World Dental Federation. Facts, Figures and Stats—Oral Disease: 10 Key Facts. Available online: https://www.fdiworlddental.org/oral-health/ask-the- dentist/facts-figures-and-stats(accessed on 23 December 2020).
- 21. Jackson, J. (2002). Data Mining; A Conceptual Overview. Communications of the Association for Information Systems, 8, pp-pp. https://doi.org/ 10.17705/1CAIS.00819.
- 22. Carter K, Landini G, Walmsley AD. Automated quantification of dental plaque accumulation using digital imaging. J Dent. 2004 Nov;32(8):623-8. doi: 10.1016/j.jdent.2004.06.006. PMID: 15476956.
- 23. Kang J, Li X, Luan Q, Liu J, Min L. Dental plaque quantification using cellular neural network-based image segmentation. InIntelligent Computing in Signal Processing and Pattern Recognition: International Conference on Intelligent Computing, ICIC 2006 Kunming, China, August 16–19, 2006 2006 (pp. 797- 802). Springer Berlin Heidelberg.
- 24. Imangaliyev S., van der Veen M.H., Volgenant C.M.C., Keijser B.J.F., Crielaard W., Levin E. Springer; 2016. Deep learning for classification of dental plaque images; pp. 407–410.
- 25. You W, Zhang H, Zhao X. A Siamese CNN for image steganalysis. IEEE Transactions on Information Forensics and Security. 2020 Jul 31;16:291-306.
- 26. Saghiri MA, Garcia-Godoy F, Gutmann JL, Lotfi M, Asgar K. The reliability of artificial neural network in locating minor apical foramen: a cadaver study. J Endod. 2012 Aug;38(8):1130-4. doi: 10.1016/j. joen.2012.05.004. Epub 2012 Jun 20. PMID: 22794221.
- 27. Boreak N. Effectiveness of Artificial Intelligence Applications Designed for Endodontic Diagnosis, Decision-making, and Prediction of Prognosis: A Systematic Review. J Contemp Dent Pract 2020;21(8):926–934. https://doi.org/10.5005/jp- journals-10024-2894.
- 28. Hatvani J, Horváth A, Michetti J, Basarab A, Kouamé D, Gyöngy M. Deep learning-based super-resolution applied to dental computed tomography. IEEE Transactions on Radiation and Plasma Medical Sciences. 2018 Apr 16;3(2):120-8. https://doi. org/10.1109/TRPMS.2018.2827239.
- 29. Ekert T, Krois J, Meinhold L, Elhennawy K, Emara R, Golla T, Schwendicke F. Deep Learning for the Radiographic Detection of Apical Lesions. J Endod. 2019 Jul;45(7):917-922.e5. doi: 10.1016/j.joen.2019. 03.016. Epub 2019 Jun 1. PMID: 31160078.
- 30. Fukuda M, Inamoto K, Shibata N, Ariji Y, Yanashita Y, Kutsuna S, Nakata K, Katsumata A, Fujita H, Ariji E. Evaluation of an artificial intelligence system for detecting vertical root fracture on panoramic radiography. Oral Radiol. 2020 Oct;36(4):337-343. doi: 10.1007/s11282-019-00409-x. Epub 2019 Sep 18. PMID: 31535278.
- 31. Orhan K, Bayrakdar IS, Ezhov M, Kravtsov A, Özyürek T. Evaluation of artificial intelligence for detecting periapical pathosis on cone-beam computed tomography scans. Int Endod J. 2020 May;53(5):680- 689. doi: 10.1111/iej.13265. Epub 2020 Feb 3. PMID: 31922612.
- 32. Uckelman SL. In. Computing with Concepts, Computing with Numbers: Llull, Leibniz, and Boole. Berlin: Springer; 2010. p. 427-37.http://dx.doi.org/ 10.1007/978-3-642-13962-8_47.
- 33.Negevitsky M. www.pearson-books.com Artificial Intelligence A Guide to Intelligent Systems. http://www.academia.dk/BiologiskAntropologi/Epide miologi/DataMining/Artificial_Intelligence- A_Guide_to_Intelligent_Systems.pdf