THEORETICAL ASPECTS OF TWO-PHOTON CHARGE TRANSFER PROCESSES IN HOMOGENEOUS CONDENSED SYSTEMS
Creators
Description
Abstract
The paper presents theoretical models for two-photon processes occurring in homogeneous condensed systems with polyatomic impurity particles. Theoretical calculations were carried out mainly for resonance processes, which make the main contribution to the two-photon processes of absorption and emission of photons. The calculation of the double differential cross section of the processes was carried out using the apparatus of Green's functions of polarization operators of a condensed medium.
Analytical expressions for the kinetic parameters of two-photon processes in condensed systems are obtained. Numerical calculations can be carried out for various model systems.
Other
References:
1. Leng Y. Materials characterization. Introduction to microscopic and spectroscopic methods. John Wiley & Sons, 2008. 351 p.
2. Kukura, Philipp; McCamant, David W.; Mathies, Richard A. Femtosecond Stimulated Raman Spectroscopy. Annual Review of Physical Chemistry. 2007, 58, N. 1, p. 461–488. doi:10.1146/annurev.physchem.58.032806.104456.
3. Andreas Zumbusch, Hansgeorg Schnöckel. Raman and IR spectroscopy of (GeO), with n=1,2,3,4, isolated in solid argon. J. Chem. Phys. 1998, 108, p. 8092–8100.
4. Kneipp K; et al. (1999). "Surface-Enhanced Non-Linear Raman Scattering at the Single Molecule Level". Chem. Phys. 1999, 247, N1, p. 155–162. doi:10.1016/S0301-0104(99)00165-2.
5. Woodbury, E. J.; Ng, W. K. Ruby laser operation in the near IR. Proceedings of the Institute of Radio Engineers. 1962, 50, N. 11, p. 2367. doi:10.1109/JRPROC.1962.287964.
6. S. P. Smith et al. Narrow-linewidth stimulated Brillouin fiber laser and applications. Opt. Lett. 1991, 16, N.6, p. 393-395. doi.org/10.1364/OL.16.000393.
7. R. M. Shelby et al., Guided acoustic-wave Brillouin scattering. Phys. Rev. 1985, 31, N.8, p.5244. doi.org/10.1103/PhysRevB.31.5244.
8. Y. Okawachi, Tunable all-optical delays via Brillouin slow light in an optical fiber. Phys. Rev. Lett. 2005, 94, N.15, p.153902. doi.org/10.1103/PhysRevLett.94.153902.
9. Battimelli, Giovanni. "Obituary: Franco Rasetti". Physics Today. 2002, 55, N. 12, p. 76–78. doi:10.1063/1.1537927.
10. Guerrini L. and Graham D. Molecularly-mediated assemblies of plasmonic nanoparticles for Surface-Enhanced Raman Spectroscopy applications. Chem. Soc. Rev. 2012, 41, N.21, p.7085–7107.
11. Li D.-W., Zhai W.-L., Li Y.-T., Long Y.-T. Recent progress in surface enhanced Raman spectroscopy for the detection of environmental pollutants. Microchimica Acta. 2014, 181, p.23–43.
12. Puppels G.J., de Mul F.F., Otto C., Greve J., Robert-Nicoud M., Arndt-Jovin D.J., Jovin T.M. Studying single living cells and chromosomes by confocal Raman microspectroscopy. Nature. 1990, 347, p.301–303.
13. Chan J.W. Recent advances in laser tweezers Raman spectroscopy (LTRS) for label-free analysis of single cells. J. Biophotonics. 2013, 6, N.1, p.36–48. doi: 10.1002/jbio.201200143. Epub 2012 Nov 23.
14. Minogue N., Riordan E., Sodeau J.R. Raman Spectroscopy as a Probe of LowTemperature Ionic Speciation in Nitric and Sulfuric Acid Stratospheric Mimic Systems. J. Phys. Chem. A 2003, 107, N22, p. 4436-4444.
15. Ratcliffe C.I., Irish D.E. Vibrational spectral studies of solutions at elevated temperatures and pressures. VII. Raman spectra and dissociation of nitric acid. Can. J. Chem. 1985, 63, N12, p. 3521-3525.
16. Lucas H., Petitet J.-P. High Pressure Raman Spectroscopy of Nitric Acid. J. Phys. Chem. A 1999, 103, p. 8952-8958, doi. 10.1021/jp9910486.
17. Johnson P.B., Christy R.W. Optical Constants of the Noble Metals. Phys. Rev. B. 1972, 6, N.12-15, P. 4370. doi.org/10.1103/PhysRevB.6.4370.
18. Le Ru E.C., Etchegoin P.G. Principles of Surface-Enhanced Raman Spectroscopy and related plasmonic effects. Oxford: Elsevier, 2009. 688 p.
19. Van Duyne R. P., Hulteen J. C., Treichel D. A. Atomic force microscopy and surface‐enhanced Raman spectroscopy. I. Ag island films and Ag film over polymer nanosphere surfaces supported on glass. J. Chem. Phys. 1993. 99, N.3, p. 2101-2115. doi.org/10.1063/1.465276.
20. Itoh, Yuki . “Polarization Dependence of Raman Scattering from a Thin Film Involving Optical Anisotropy Theorized for Molecular Orientation Analysis”. The Journal of Physical Chemistry A. 2012, 116, N.23, p. 5560—5570. DOI:10.1021/jp301070a. PMID 22551093.
21. Schlücker, S. Design and synthesis of Raman reporter molecules for tissue imaging by immuno-SERS microscopy. Journal of Biophotonics. 2011, 4, N.6, p. 453-463. DOI:10.1002/jbio.201000116. PMID 21298811.
22. Kneipp K . Surface-Enhanced Non-Linear Raman Scattering at the Single Molecule Level. Chem. Phys. 1999, 247, N. 1, p. 155—162. DOI:10.1016/S0301-0104(99)00165-2.
23. Lowell I. McCann, K. Trentelman, T. Possley, B. Golding. Corrosion of ancient Chinese bronze money trees studied by Raman microscopy. Journal of Raman Spectroscopy. 1999, 30, N. 2, p. 121-132. doi.org/10.1002/(SICI)1097-4555(199902)30:2<121::AID-JRS355>3.0.CO;2-L.
24. Iliev, M. N. “Distortion-dependent Raman spectra and mode mixing in RMnO3 perovskites (R=La,Pr,Nd,Sm,Eu,Gd,Tb,Dy,Ho,Y)”. Physical Review B., 2006, 73, N. 6, p. 064302-1 – 064302-6. DOI:10.1103/physrevb.73.064302.
Files
NJD_122-135-139.pdf
Files
(708.2 kB)
Name | Size | Download all |
---|---|---|
md5:90b574ddec82e66010f2cf4ab983e390
|
708.2 kB | Preview Download |