Dataset Open Access
Jing Wei;
Song Liu;
Zhanqing Li;
Cheng Liu;
Kai Qin;
Xiong Liu;
Rachel T. Pinker;
Russell R. Dickerson;
Jintai Lin;
K. F. Boersma;
Lin Sun;
Runze Li;
Wenhao Xue;
Yuanzheng Cui;
Chengxin Zhang;
Jun Wang
ChinaHighNO2 is one of the series of long-term, full-coverage, high-resolution, and high-quality datasets of ground-level air pollutants for China (i.e., ChinaHighAirPollutants, CHAP). It is generated from the big data (e.g., ground-based measurements, satellite remote sensing products, atmospheric reanalysis, and model simulations) using artificial intelligence by considering the spatiotemporal heterogeneity of air pollution.
This is the big data-derived seamless (spatial coverage = 100%) daily, monthly, and yearly 1 km (i.e., D1K, M1K, and Y1K) ground-level NO2 dataset in China from 2019 to 2020. This dataset yields a high quality with a cross-validation coefficient of determination (CV-R2) of 0.93, a root-mean-square error (RMSE) of 4.89 µg m-3, and a mean absolute error (MAE) of 3.48 µg m-3 on a daily basis.
Note that the ChinaHighNO2 dataset is 1 km after 2019, but 10 km before 2019, which is available at https://doi.org/10.5281/zenodo.4641542. If you use the ChinaHighNO2 dataset for related scientific research, please cite the corresponding reference (Wei et al., ES&T, 2023; Wei et al., ACP, 2022):
Wei, J., Liu, S., Li, Z., Liu, C., Qin, K., Liu, X., Pinker, R., Dickerson, R., Lin, J., Boersma, K., Sun, L., Li, R., Xue, W., Cui, Y., Zhang, C., and Wang, J. Ground-level NO2 surveillance from space across China for high resolution using interpretable spatiotemporally weighted artificial intelligence. Environmental Science & Technology, 2022, 56(14), 9988–9998. https://doi.org/10.1021/acs.est.2c03834
Wei, J., Li, Z., Wang, J., Li, C., Gupta, P., and Cribb, M. Ground-level gaseous pollutants (NO2, SO2, and CO) in China: daily seamless mapping and spatiotemporal variations. Atmospheric Chemistry and Physics, 2023, 23, 1511–1532. https://doi.org/10.5194/acp-23-1511-2023
More CHAP datasets of different air pollutants can be found at: https://weijing-rs.github.io/product.html
Name | Size | |
---|---|---|
ATBD_ChinaHighNO2.pdf
md5:c0ba441218c646228a9b02df8f55ab24 |
2.3 MB | Download |
CHAP_NO2_D1K_201901_V1.rar
md5:9b13044760485a3ffd5bdc4a908e3a31 |
344.4 MB | Download |
CHAP_NO2_D1K_201902_V1.rar
md5:6003dbf54af86ebfe66694ce4318cbbf |
302.2 MB | Download |
CHAP_NO2_D1K_201903_V1.rar
md5:5502570a851839e9480dc57321924ae5 |
338.4 MB | Download |
CHAP_NO2_D1K_201904_V1.rar
md5:6450a515d0768d75d2c234b14b799830 |
325.4 MB | Download |
CHAP_NO2_D1K_201905_V1.rar
md5:96b638e2835206bb5f1e106c096231e5 |
334.0 MB | Download |
CHAP_NO2_D1K_201906_V1.rar
md5:e80378623d94ae4eded297dd9419bde2 |
323.5 MB | Download |
CHAP_NO2_D1K_201907_V1.rar
md5:795255e48bc3d5fe6439aa2a6e6f8616 |
331.7 MB | Download |
CHAP_NO2_D1K_201908_V1.rar
md5:8d8dddadf153eecdaa7497b6295e421a |
331.6 MB | Download |
CHAP_NO2_D1K_201909_V1.rar
md5:95967b4cd8ef852e4f02f105a10ee9b6 |
326.3 MB | Download |
CHAP_NO2_D1K_201910_V1.rar
md5:3de52331bfd8a8eb485610e65f6aefe9 |
338.8 MB | Download |
CHAP_NO2_D1K_201911_V1.rar
md5:7b72ec05e60ec11ed3cc3e4e3386e042 |
330.9 MB | Download |
CHAP_NO2_D1K_201912_V1.rar
md5:907bd5defb46c5a3401395d938b0106f |
346.9 MB | Download |
CHAP_NO2_D1K_202001_V1.rar
md5:93e615f5454fc11edd75d3de1478916f |
336.9 MB | Download |
CHAP_NO2_D1K_202002_V1.rar
md5:d125e4cfb82624b3aaec07af3259f5b4 |
299.8 MB | Download |
CHAP_NO2_D1K_202003_V1.rar
md5:a2703ab7a627d1cfa2ab4afd78a790df |
325.2 MB | Download |
CHAP_NO2_D1K_202004_V1.rar
md5:32cfec6aad8f9915221caa63798c002b |
319.3 MB | Download |
CHAP_NO2_D1K_202005_V1.rar
md5:538355d0ede90453ecd68810d8c7b5b4 |
330.4 MB | Download |
CHAP_NO2_D1K_202006_V1.rar
md5:f4c4c7b546a85c1e6092cdd549979d5c |
319.6 MB | Download |
CHAP_NO2_D1K_202007_V1.rar
md5:9d64ad429b4a8bee1cdf0ac494a194e7 |
330.5 MB | Download |
CHAP_NO2_D1K_202008_V1.rar
md5:1b80f67df262e2f7763d6a0ce357c6e2 |
327.0 MB | Download |
CHAP_NO2_D1K_202009_V1.rar
md5:931325cc8e8f473ac19e83350352ab39 |
321.9 MB | Download |
CHAP_NO2_D1K_202010_V1.rar
md5:2136248ce55c35e92a8f58fc9768dd5e |
335.6 MB | Download |
CHAP_NO2_D1K_202011_V1.rar
md5:e3464615482c73070de3442f85abe7c6 |
330.8 MB | Download |
CHAP_NO2_D1K_202012_V1.rar
md5:61c8aa28624d7d824135a645daf656d9 |
340.4 MB | Download |
CHAP_NO2_M1K_2019_V1.rar
md5:2969b1379939abcb867322ed0c9d1bbe |
122.6 MB | Download |
CHAP_NO2_M1K_2020_V1.rar
md5:eb2b852c07e303473eae2dcfa2d763e1 |
119.8 MB | Download |
CHAP_NO2_Y1K_2019_V1.nc
md5:3bfc8d7c4b6561bfe7fe073e2120f8e4 |
10.3 MB | Download |
CHAP_NO2_Y1K_2020_V1.nc
md5:c6d4c5a8d66e8a1d43cf56f58ce96756 |
10.0 MB | Download |
nc2geotiff codes.rar
md5:6b152c60b85a2236762f0339676e31a5 |
3.0 kB | Download |
Wei, J., Liu, S., Li, Z., Liu, C., Qin, K., Liu, X., Pinker, R., Dickerson, R., Lin, J., Boersma, K., Sun, L., Li, R., Xue, W., Cui, Y., Zhang, C., and Wang, J. Ground-level NO2 surveillance from space across China for high resolution using interpretable spatiotemporally weighted artificial intelligence. Environmental Science & Technology, 2022, 56(14), 9988–9998.
All versions | This version | |
---|---|---|
Views | 3,996 | 2,627 |
Downloads | 11,630 | 9,067 |
Data volume | 2.0 TB | 2.0 TB |
Unique views | 3,286 | 2,247 |
Unique downloads | 3,275 | 2,379 |