Sequence-dependent model of genes with dual σ factor preference
Creators
- 1. Tampere University
- 2. Uppsala University
Description
Escherichia coli uses s factors to quickly control large gene cohorts during stress conditions. While most of its genes respond to a single s factor, approximately 5% of them have dual s factor preference. The most common are those responsive to both s70, which controls housekeeping genes, and s38, which activates genes during stationary growth and stresses. Using RNA-seq and flow-cytometry measurements, we show that 'σ70+38 genes' are nearly as upregulated in stationary growth as 'σ38 genes'. Moreover, we find a clear quantitative relationship between their promoter sequence and their response strength to changes in σ38 levels. We then propose and validate a sequence dependent model of σ70+38 genes, with dual sensitivity to s38 and s70, that is applicable in the exponential and stationary growth phases, as well in the transient period in between. We further propose a general model, applicable to other stresses and σ factor combinations. Given this, promoters controlling σ70+38 genes (and variants) could become important building blocks of synthetic circuits with predictable, sequence-dependent sensitivity to transitions between the exponential and stationary growth phases.
Notes
Files
Data.zip
Files
(666.1 MB)
Name | Size | Download all |
---|---|---|
md5:47ca208fe3b880f63fee486923bfca26
|
666.1 MB | Preview Download |
Additional details
Related works
- Is cited by
- 10.1016/j.bbagrm.2022.194812 (DOI)