Book Closed Access

Avinit vacuum-plasma technologies in transport machine building

Alex Sagalovych; Vlad Sagalovych; Victor Popov; Stas Dudnik; Oleksander Olijnyk

Transport engineering is one of the areas in which coatings for various functional purposes are widely used. Among the many methods used for coating, the group of vacuum-plasma methods occupies one of the leading directions in the field of obtaining coatings with unique characteristics that make it possible to significantly increase the operational characteristics of machines and mechanisms lay down new design solutions for their improvement. The monograph presents the results of the development and practical implementation of new nanomaterials and nanotechnologies for the deposition of Avinit coatings for various functional purposes. A distinctive feature of the presented developments is the integrated use of various vacuum-plasma and plasma-chemical coating methods (vacuum-arc, magnetron), vacuum-plasma processing and diffuse surface saturation. The experimental and technological equipment created for this – the Avinit vacuum-plasma automated cluster – makes it possible to implement various methods of coating deposition, combined into one technological cycle. In the monograph, much attention is paid to the results of experimental studies of obtaining coatings of various compositions and the study of their tribological characteristics in friction pairs with such coatings, as well as other properties. The issues of stability of characteristics of coatings in time are considered, as well as the criteria for such stability.
Based on the research carried out, a number of experimental industrial technologies for applying coatings for various functional purposes (reinforcing anti-seize, protective) on parts of transport engineering (pistons and rings of internal combustion engines, fuel equipment, etc.) have been developed, examples of the successful application of the developed technologies in mass production are given. aeronautical and other purposes The monograph also discusses the issues of creating highly efficient tools for processing machine parts and mechanisms, including with precision accuracy, and presents the results of developments in this area.
The book is intended for specialists working in the field of ion-plasma modification of the surface of materials and the application of functional coatings on parts of transport engineering and other industries.

 

If you would like access to the publication, please send us a request

Closed Access

Files are not publicly accessible.

  • Chaynov, N. F. (2001). Problemy i perspektivy porshnevogo dvigatelestroeniya v Rossii. Dvigatelestroenie, 4, 46–47.

  • Arzamasov, B. N. (Ed.) (1990). Konstrukcionnye materialy. Moscow: Mashinostroenie, 131.

  • Semenov, A. P. (1980). Shvatyvanie metallov i metody ego predotvrascheniya pri trenii. Trenie i iznos, 1 (2), 236–246.

  • Bugas, N. A. (1993). Reshennye i nereshennye zadachi po sovmestimosti tribosistem. Trenie i iznos, 4, 25–33.

  • Tekekbaum, M. M. (1991). Nadezhnost' sel'hozmashin: nedostatki metodologii ee ocenki. Traktory i sel'skohozyaystvennye mashiny, 8, 38–40.

  • Fox-Rabinovich, G., Totten, G. E. (Eds.) (2006). Self-Organization During Friction. CRC Press, 459. doi: https://doi.org/10.1201/9781420017861

  • Francevicha, I. N. (Ed.) (1997). Anodnye okisnye pokrytiya na legkih metallah i splavah. Kyiv: Naukova dumka, 259.

  • Fuks-Rabinovich, G. S., Kacura, A. A., Moiseev, V. F., Dosbaeva, G. K. (1989). Vliyanie fazovogo sostava na iznosostoykost' ionno-plazmennyh pokrytiy iz nitrida titana. Trenie i znos, 10 (4), 742–744.

  • Moiseev, V. F., Fuks-Rabinovichm G. S., Dosbaeva, G. K., Skvorcov, V. N. (1990). Vyazkost' i plastichnost' ionno-plazmennyh pokrytiy iz nitrida titana. Zavodskaya laboratoriya, 1, 57–59.

  • Sal'nikov, A. S. (1993). Iznosostoykost' nitridnyh plenok. MiTOM, 5, 2–5.

  • Byakova, A. V. (1992). Vliyanie strukturnogo sostoyaniya pokrytiy iz nitrida titana na ih prochnost'. Sverhtverdye materialy, 5, 30–37.

  • Derflinger, V., Brändle, H., Zimmermann, H. (1999). New hard/lubricant coating for dry machining. Surface and Coatings Technology, 113 (3), 286–292. doi: https://doi.org/10.1016/s0257-8972(99)00004-3

  • Kaysmasov, L. K. (1991). Povyshenie kachestva iznosostoykih ionno-plazmennyh pokrytiy. Tyazheloe mashinostroenie, 12, 17–18.

  • Antonova, E. A. et. al. (1968). Nekotorye dannye ob ustoychivosti metallokeramicheskih pokrytiy k zadiraniyu. Temperaturoustoychivye zaschitnye pokrytiya. Leningrad: Nauka, 267.

  • Kostyuk, G. I. (2002). Fiziko-tehnicheskie osnovy napyleniya pokrytiy, ionnoy implantacii ionnogo legirovaniya, lazernoy obrabotki i uprochneniya, kombinirovannyh tehnologiy. Kharkiv: AINU, 1030.

  • Aksonov, I. I., Aksonov, S. D., Andrieiev, A. A., Bilous, V. A., Sobol, O. V. (2015). Vakuumno-duhovi pokryttia. Kharkiv, 210.

  • Kostyuk, G. I., Popov, V. V. (2020). Nanotechnology in aviation and general machine building industry. Kharkiv: Planeta-Print Ltd, 688.

  • Lyubchenko, A. P., Macevitiy, V. M., Bakakin, G. N., Beresnev, V. M., Oleynik, A. K. (1983). Issledovanie iznosa vakuumno-plazmennyh pokrytiy iz TiN pri trenii po metallicheskim materialam. Trenie i iznos, 4 (5), 892–897.

  • Lapshin, V. I., Shulaev, V. M., Andreev, A. A. (2002). Vakuumnye tehnologii v proizvodstve instrumenta iz bystrorezhuschih staley s povyshennymi sluzhebnymi harakteristikami. Proc. 3 Int. Conf. "Equipm. аnd Techn. of Thermal Treatment of Metals and Alloys" (ОТТОМ-3). Kharkiv, 33–37.

  • Tanaka, Y., Gür, T. M., Kelly, M., Hagstrom, S. B., Ikeda, T., Wakihira, K., Satoh, H. (1992). Properties of (Ti1−xAlx)N coatings for cutting tools prepared by the cathodic arc ion plating method. Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, 10 (4), 1749–1756. doi: https://doi.org/10.1116/1.577742

  • Coll, B. F., Sathrum, P., Fontana, R., Peyre, J. P., Duchateau, D., Benmalek, M. (1992). Optimization of arc evaporated (Ti,Al)N film composition for cutting tool applications. Surface and Coatings Technology, 52 (1), 57–64. doi: https://doi.org/10.1016/0257-8972(92)90371-g

  • Corban', V. F. et. al. (2000). Tribological Characteristics of Multi-layer Ion-Plasma Coatings, Based on Chromium and Titanium Nitrides. Proc. 1 Int. Congress on Rad. Phys. High Current Electronics and Modif. Materials. Vol. 3. Tomsk, 494–496.

  • Andrievskiy, R. A., Anisimova, I. A., Anisimov, V. G. (1992). Formirovanie struktury i mikrotverdost' mnogosloynyh dugovyh kondensatov na osnove nitridov. FizHOM, 2, 99–102.

  • Lewis, D. B., Wadsworth, I., Münz, W.-D., Kuzel, R., Valvoda, V. (1999). Structure and stress of TiAlN/CrN superlattice coatings as a function of CrN layer thickness. Surface and Coatings Technology, 116-119, 284–291. doi: https://doi.org/10.1016/s0257-8972(99)00132-2

  • Andreev, A. A. i dr. (2002). Nanesenie vakuumno-dugovyh pokrytiy CrxN – TiN na podlozhki iz chuguna i stali s posleduyuschey termoobrabotkoy. Proc. 3 Int. Conf. "Equipm. and Techn. of Thermal Treatment of Metals and Alloys" (OTTOM-3). Kharkiv, 86–88.

  • Andreev, A. A., Kunchenko, V. V., Sablev, L. P. et. al. (2001). Dupleksnaya obrabotka instrumental'nyh staley v vakuume. Proc. 2 Int. Conf. "Equipm. аnd Techn. of Thermal Treatment of Metals and Alloys" (ОТТОМ-2). Kharkiv, 48–56.

  • Vereshaka, A. S. (1993). Rabotosposobnost' rezhuschego instrumenta s iznosostoykimi pokrytiyami. Moscow: Mashinostroenie, 336.

  • Sahalovych, A. V., Kononykhin, A. V., Popov, V. V., Dudnik, C. F., Sahalovych, V. V. (2010). Ustanovka Avinit dlia nanesennia bahatosharovykh funktsionalnykh pokryttiv. Fizicheskaya inzheneriya poverhnosti, 8 (4), 336–347. Available at: http://dspace.nbuv.gov.ua/bitstream/handle/123456789/98914/8-Sagalovich.pdf?sequence=1

  • Popov, V., Sagalovych, A., Sagalovych, V.; Sagalovych, V. (Ed.) (2020). Improving the performance, reliability and service life of aviation technology products based on the innovative vacuum-plasma nanotechnologies for application of avinit functional coatings and surfaces modification. Tallinn: Scientific Route OÜ, 102. doi: https://doi.org/10.21303/978-9916-9516-1-3

  • Popov, V. V., Sahalovych, O. V., Sahalovych, V. V. (2020). Vakuum-plazmovi nanotekhnolohiyi Avinit. Kharkiv: FED, 241.

  • Sagalovych, A., Sagalovych, V., Popov, V., Dudnik, S.; Sagalovych, V. (Ed.) (2021). Vacuum-plasma multilayer protective coatings for turbine blades. Tallinn: Scientific Route OÜ, 91. doi: https://doi.org/10.21303/978-9916-9516-5-1

  • Sagalovich, A. V., Kononyhin, A. V., Popov, V. V., Dudnik, C. F., Sagalovich, V. V. (2011). Eksperimental'nye issledovaniya pokrytiy tipa Avinit. Aviacionno-kosmicheskaya tehnika i tehnologiya, 3, 5–15. Available at: http://nbuv.gov.ua/UJRN/aktit_2011_3_3

  • Sagalovych, A., Kononykhin, A., Popov, V., Sagalovych, V. (2013). Experimental research of multicomponent multilayer ion-plasma Avinit coatings. Fizicheskaya inzheneriya poverhnosti, 11 (1), 4–17. Available at: http://nbuv.gov.ua/UJRN/Phip_2013_11_1_3

  • Sahalovych, V. V., Popov, V. V., Kononykhin, O. V., Bohoslavtsev, V. I. (2015). Pat. No. 109053 UA. Znosostiyke antyfryktsiyne pokryttia. No. a201313223; declareted: 13.11.2013; published: 10.07.2015, Bul. No. 13. Available at: https://uapatents.com/7-109053-znosostijjke-antifrikcijjne-pokrittya.html

  • Sahalovych, V. V., Popov, V. V., Kononykhin, O. V., Bohoslavtsev, V. I. (2015). Pat. No. 108279 UA. Bahatosharove, znosostiike pokryttia. No. a201308247; declareted: 01.07.2013; published: 10.04.2015, Bul. No. 7. Available at: https://uapatents.com/8-108279-bagatosharove-znosostijjke-pokrittya.html

  • Sagalovich, A. V., Sagalovich, V. V., Popov, V. V., Kononyhin, A. V., Bogoslavcev, V. I. (2013). Pat. No. 141213 RU. Iznosostoykoe antifrikcionnoe pokrytie detaley par treniya. No. 2013152088; declareted: 22.11.2013; published: 27.05.2014. Available at: https://www.lens.org/lens/patent/013-865-821-440-121/frontpage

  • Sagalovich, A. V., Sagalovich, V. V., Popov, V. V., Kononyhin, A. V., Bogoslavcev, V. I. (2013). Pat. No. 2543643 RU. Ploskaya zolotnikovaya para i mnogosloynoe iznosostoykoe pokrytie. No. 2013133367; declareted: 17.07.2013; published: 20.02.2015. Available at: https://www.lens.org/lens/patent/167-445-920-489-979/frontpage

  • Sagalovych, A. V., Babenko, V. A., Dudnik, S. F., Sagalovych, V. V., Cononyhin, A. V., Popov, V. V. et. al. (2007). Multicomponent coatings for precise tribological pairs working in friction assembly of machine building and aviation. Fizicheskaya inzheneriya poverhnosti, 5 (1-2), 155–164. Available at: http://dspace.nbuv.gov.ua/bitstream/handle/123456789/98803/4-Sagalovych.pdf?sequence=1

  • Sagalovich, A. V., Grigor'ev, A. V., Kononykhin, A. V., Popov, V. V., Sagalovich, V. V., Boguslaev, V. A. et. al. (2014). Pat. No. 2520237 RU. Application of two-component chromium-aluminium coating on gas turbine cooled blade inner cavities and device to this end. No. 2012107601/02; declareted: 28.02.2012; published: 20.06.2014, Bul. No. 17. doi: https://doi.org/10.13140/RG.2.2.25944.32007

  • Sagalovich, V. V., Sagalovich, A. V. (2013). Pat. No. 2555692 RU. Ion-plasma precision nitriding of metal part surface. No. 2013127482/02; declareted: 17.06.2013; published: 10.07.2015, Bul. No. 19. Available at: https://patentimages.storage.googleapis.com/64/70/41/c01b8140a1f302/RU2555692C2.pdf

  • Sagalovich, V. V., Popov, V. V., Boguslaev, V. A. et. al. (2012). Pat. No. 011255 RU. Ustroystvo dlya naneseniya dvuh-komponentnyh hrom-alyuminievyh pokrytiy na vnutrennie polosti ohlazhdaemyh rabochih lopatok gazovyh turbin. published: 16.04.2012.

  • Sagalovich, A. V., Sagalovich, V. V. (2008). Zapornaya armatura v korrozionno-stoykom ispolnenii. Mater. Mezhd. konf. «Ispol'zovanie pnevmaticheskoy energii i oborudovaniya dlya ee polucheniya v gornorudnoy otrasli». Sumy.

  • Sagalovych, O. V., Sagalovych, V. V., Popov, V. V., Dudnik, S. F. (2020). Vacuum-plasma protective coating for turbines blades. Mechanics and Advanced Technologies, 88 (1), 124–134. doi: https://doi.org/10.20535/2521-1943.2020.88.204675

  • Sagalovich, A. V., Sagalovich, V. V., Kononyhin, A. V., Popov, V. V., Oleynik, A. K. (2011). Razrabotka i issledovanie novyh mnogosloynyh pokrytiy Avinit D na osnove sistem «metall-uglerod». Technological Systems, 2, 36–45. Available at: http://technological-systems.net/index.php/Home/article/view/413/421

  • Sagalovich, A. V., Grigor'ev, A. V., Kononyhin, A. V., Popov, V. V., Sagalovich, V. V. (2011). Nanesenie pokrytiy na slozhnoprofil'nye precizionnye poverhnosti gazofaznym metodom (CVD). Fizicheskaya inzheneriya poverhnosti, 9 (3), 229–236. Available at: http://dspace.nbuv.gov.ua/bitstream/handle/123456789/76903/04-Sagalovich.pdf?sequence=1

  • Sagalovich, A. V., Kononyhin, A. V., Popov, V. V., Oleynik, A. K., Grigor'ev, A. V., Sagalovich, V. V. (2012). Izuchenie tribologicheskih harakteristik mnogosloynyh Mo-S pokrytiy, poluchennyh gazofaznym metodom s ispol'zovaniem metallorganicheskih soedineniy. Technological Systems, 1, 10–15. Available at: http://technological-systems.org/index.php/Home/article/view/301/308

  • Sagalovych, A., Sagalovych, V. (2013). Mo-C multilayered CVD coatings. Proceedings of SerbiaTrib '13. Kragujevac, 195. Available at: https://www.yumpu.com/en/document/read/43814103/proceedings-of-serbiatrib-13

  • Sagalovych, A., Sagalovych, V. (2013). Mo-C multilayered CVD coatings. Tribology in industry, 35 (4), 261–269. Available at: https://1library.org/document/oy89d3wq-mo-c-multilayered-cvd-coatings.html

  • Sagalovich, A. V., Kononyhin, A. V., Popov, V. V., Grigor'ev, A. V., Sagalovich, V. V., Oleynik, A. K. (2011). Izuchenie tribologicheskih harakteristik mnogosloynyh Mo-S pokrytiy, poluchennyh gazofaznym metodom s ispol'zovaniem metallorganicheskih soedineniy. Vestnik HNADU, 54, 44–51.

  • Sagalovych, A., Sagalovych, V., Kononyhin, A., Popov, V., Bogoslavcev, V. (2017). The Antifrictional Coatings on the Molybdenum Base. Proc. 15th Intern. Conf. on Tribology SERBIATRIB '17. Kragujevac.

  • Sagalovych, A., Popov, V., Sagalovych, V., Dudnik, S., Popenchuk, R. (2020). Development of the chemical vapor deposition process for applying molybdenum coatings on the components in assembly and engine construction. Eastern-European Journal of Enterprise Technologies, 2 (12 (104)), 6–15. doi: https://doi.org/10.15587/1729-4061.2020.201540

  • Sagalovych, A., Sagalovych, V., Dudnik, S. (2012). Deposition of the stoichiometric coatings by reactive magnetron sputtering. Fizicheskaya inzheneriya poverhnosti, 10 (3), 263–272. Available at: http://dspace.nbuv.gov.ua/bitstream/handle/123456789/98970/3-Sagalovych.pdf?sequence=1

  • Sahalovych, O. V., Kononykhin, O. V., Popov, V. V. et. al. (2012). Formuvannia pokryttiv stekhiometrychnoho skladu pry reaktyvnomu mahnetronnomu napylenni. Tehnologicheskie sistemy, 4 (61), 16–26.

  • Sagalovych, A., Popov, V., Sagalovych, V., Dudnik, S., Dziuba, A. (2021). The effect of obtaining conditions on the structure and composition of Сu-MoS2 coatings upon magnetron sputtering of composite targets. Functional Materials, 28 (1), 55–63. doi: https://doi.org/10.15407/fm28.01.55

  • Valvoda, V., Černý, R., Kužel, R., Musil, J., Poulek, V. (1988). Dependence of microstructure of TiN coatings on their thickness. Thin Solid Films, 158 (2), 225–232. doi: https://doi.org/10.1016/0040-6090(88)90024-7

  • Becofen, S. Ya., Petrov, L. M., Lazarev, E. M. et. al. (1990). Struktura i svoystva ionno-plazmennyh pokrytiy ΤiΝ. Metally, 3, 158–165.

  • Belous, V. A., Kartmazov, G. N., Pavlov, V. S. et. al. (1988). Ionno-plazmennye processy osazhdeniya pokrytiy. Metod atomno-ionnogo raspyleniya. Obzor. Moscow: CNIIatominform, 48.

  • Hauert, R., Patscheider, J. (2000). From alloying to nanocomposites – improved performance of hard coatings. Advanced Engineering Materials, 2 (5), 247–259. doi: https://doi.org/10.1002/(sici)1527-2648(200005)2:5<247::aid-adem247>3.0.co;2-u

  • Beresnev, V. M., Fedorenko, A. I., Gritsenko, V. I., Perlov, D. L. (2003). Research of friction properties of composite coatings obtained by a vacuum – ARC method. Fizicheskaya inzheneriya poverhnosti, 1 (2), 180–183. Available at: http://dspace.nbuv.gov.ua/bitstream/handle/123456789/98437/8-Beresnev.pdf?sequence=1

  • Zhou, M., Makino, Y., Nose, M., Nogi, K. (1999). Phase transition and properties of Ti–Al–N thin films prepared by r.f.-plasma assisted magnetron sputtering. Thin Solid Films, 339 (1-2), 203–208. doi: https://doi.org/10.1016/s0040-6090(98)01364-9

  • Efeoglu, I. (2007). Deposition and characteriztion of a multilayered-composite solid lubricant coating. Reviews on Advanced Materials Science, 15 (2). Available at: https://www.researchgate.net/publication/228420023_Deposition_and_characteriztion_of_a_multilayered-composite_solid_lubricant_coating

  • Spassov, V., Savan, A., Phani, A. R., Stueber, M., Haefke, H. (2003). Quaternary–matrix, nanocomposite self-lubricating PVD coatings in the system TiAlCN-MoS2 – structure and tological properties. MRS Proceedings, 788. doi: https://doi.org/10.1557/proc-788-l11.29

  • Holubar, P., Janca, J., Veprek, S. (2003). Development and Industrialization of Novel Superhard Nanocristalline Composite Wear-Protection Coatings. Final Report @Nato Science for Peace Programme. No. SFP 972379.

  • Delplancke-Ogletree, M. P., Monteiro, O. R. (2001). Preparation by pulsed vacuum arc deposition and characterization of DLC/MoS2 nanocomposite thin films. ICMCTF. Available at: https://escholarship.org/content/qt32b0x7d9/qt32b0x7d9.pdf?t=lnq6y2

  • Musil, J. (2000). Hard and superhard nanocomposite coatings. Surface and Coatings Technology, 125 (1-3), 322–330. doi: https://doi.org/10.1016/s0257-8972(99)00586-1

  • Vepřek, S., Reiprich, S. (1995). A concept for the design of novel superhard coatings. Thin Solid Films, 268 (1-2), 64–71. doi: https://doi.org/10.1016/0040-6090(95)06695-0

  • Lahtin, Yu. M., Arzamasov, B. N. (1985). Himiko-termicheskaya obrabotka metallov. Moscow: Metallurgiya, 256.

  • Arzamasov, B. N., Bratuhin, A. G., Eliseev, Yu. S., Panayoti, T. A. (1999). Ionnaya himiko-termicheskaya obrabotka splavov. Moscow: Izd-vo MGTU im. N.E. Baumana, 400.

  • Chatterdzhi-Fisher, R., Eyzell, F. V. et. al. (1990). Azotirovanie i karbonitrirovanie. Moscow: Metallurgiya, 280.

  • Prokoshkin, D. A. (1984). Himiko-termicheskaya obrabotka metallov – karbonitraciya. Moscow: Mashinostroenie, Metallurgiya, 240.

  • Lahtin, Yu. M.. Kogan, Ya. D., Shpis, G.-I., Bomer, Z. (1991). Teoriya i tehnologiya azotirovaniya. Moscow: Metallurgiya, 320.

  • Sahalovych, O. V., Sahalovych, V. V. (2013). Pat. No. 84664 UA. Sposib ionno-plazmovoho pretsyziynoho azotuvannia poverkhon stalei i splaviv Avinit N. No. u201305770; declareted: 16.08.2013; published: 25.10.2013, Bul. No. 20. Available at: https://uapatents.com/10-84664-sposib-ionno-plazmovogo-precizijjnogo-azotuvannya-poverkhon-stalejj-i-splaviv-avinit-n.html

  • Sahalovych, V. V., Sahalovych, O. V. (2013). Pat. No. 107408 UA. Sposib ionno-plazmovoho pretsyziynoho azotuvannia poverkhon detali zi stalei i splaviv Avinit N. No. a201305768; declareted: 07.05.2013; published: 25.12.2014, Bul. No. 24. Available at: https://uapatents.com/11-107408-sposib-ionno-plazmovogo-precizijjnogo-azotuvannya-poverkhon-detali-zi-stalejj-i-splaviv-avinit-n.html

  • Sahalovych, O. V., Sahalovych, V. V., Ostapchuk, D. P. (2014). Pat. No. 95405 UA. Znosostiyke ionno-plazmove pokryttia dlia rizhuchoho i formotvornoho instrumentu. No. u201406981; declareted: 20.06.2014; published: 25.12.2014, Bul. No. 24. Available at: https://uapatents.com/7-95405-znosostijjke-ionno-plazmove-pokrittya-dlya-rizhuchogo-i-formotvornogo-instrumentu.html

  • Sagalovych, O. V., Popov, V. V., Sagalovych, V. V. (2019). Plasma precision nitriding avinit of metals and alloys. Technological systems, 4 (89), 50–56. doi: https://doi.org/10.29010/89.8

  • Sagalovych, A., Popov, V., Sagalovуch, V., Dudnik, S., Bogoslavzev, V., Stadnichenko, N., Edinovych, A. (2020). Comparative analysis of the fatigue contact strength of surfaces hardened by cementation and the ion-plasma nitriding Аvinit N. Eastern-European Journal of Enterprise Technologies, 6 (12 (108)), 20–27. doi: https://doi.org/10.15587/1729-4061.2020.217674

  • Sagalovych, A., Popov, V., Sagalovych, V., Dudnik, S., Edinovych, A. (2021). Application of Avinit vacuum plasma technologies Avinit to the manufacture of high-precision full-size gears. Mechanics and Advanced Technologies, 5 (1), 79–88. doi: https://doi.org/10.20535/2521-1943.2021.5.1.234484

  • Rozenfel'd, I. L. (1970). Korroziya i zaschita metallov. Moscow: Metallurgiya, 448.

  • Ul'yanin, E. A. (1991). Korrozionno-stoykie stali i splavy. Moscow: Metallurgiya, 256.

  • GOST 9.005-72. Unified system of corrosion and ageing protection. Metals, alloys, metallic and non-metallic coatings. Permissible and impermissible contacts with metals and non-metals. Available at: https://docs.cntd.ru/document/1200007216

  • Mel'nikov, P. S. (1991). Spravochnik po gal'vanopokrytiyam v mashinostroenii. Moscow: Mashinostroenie, 384.

  • Shuyko, Ya. V. (1985). Korrozionnaya stoykost' vakuumnyh ionno-plazmennyh pokrytiy na malouglerodistyh stalyah. Materialy XΙΙ konferencii molodyh uchenyh. Lviv, 143–146.

  • Dudnyk, S. F., Sahalovych, V. V. et. al. (1993). Stvorennia koroziyno-stiykoho malotonazhnoho bahatofunktsionalnoho obladnannia dlia khimiko-farmatsevtychnykh vyrobnytstv. Ch. I. Kompozytsiyni koroziyno-stiyki materialy dlia yemkisnoho obladnannia khimiko-farmatsevtychnykh vyrobnytstv. Visnyk farmatsiyi, 1-2, 39–44.

  • Dudnyk, S. F., Sahalovych, V. V. ta in. (1993). Stvorennia koroziyno-stiikoho malotonazhnoho bahatofunktsionalnoho obladnannia dlia khimiko-farmatsevtychnykh vyrobnytstv. Ch. II. Vyvchennia koroziynoi stiykosti konstruktsiynykh stalei z metalevymy pokryttiamy pry syntezi likarskykh zasobiv. Visnyk farmatsiyi, 3-4, 53–59.

  • Ivanov, V. E., Nechiporenko, E. P., Krivoruchko, V. M., Sagalovich, V. V. (1974). Kristallizaciya tugoplavkih metallov iz gazovoy fazy. Moscow: Atomizdat, 264.

  • Nikitin, M. M. (1992). Tehnologiya i oborudovanie vakuumnogo napyleniya. Moscow: Metallurgiya, 112.

  • Dudnik, S. F., Sagalovich, A. V., Sagalovich, V. V. (2003). Application of metal coatings for protecting welded joints prone to electro-chemical corrosion. Fizicheskaya inzheneriya poverhnosti, 1 (3-4), 329–333. Available at: http://dspace.nbuv.gov.ua/bitstream/handle/123456789/98454/10-Dudnik.pdf?sequence=1

  • Gel'd, P. V., Ryabov, R. A. (1974). Vodorod v metallah i splavah. Moscow: Metallurgiya, 272.

  • Galaktionova, N. V. (1967). Vodorod v metallah. Moscow: Metallurgiya, 304.

  • Trapnell, B. M. W. (1953). The activities of evaporated metal films in gas chemisorption. Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences, 218 (1135), 566–577. doi: https://doi.org/10.1098/rspa.1953.0125

  • Gorshkov, I. E. (1952). Lit'e slitkov cvetnyh metallov i splavov. Moscow: Metallurgizdat, 416.

  • Fromm, E., Gebhardt, E.; Linchevskiy, B. V. (Ed.) (1980). Gazy i uglerod v metallah. Moscow: Metallurgiya, 712.

  • Cochran, C. N. (1961). The Permeability of Aluminum to Hydrogen. Journal of The Electrochemical Society, 108 (4), 317. doi: https://doi.org/10.1149/1.2428079

  • Kagan, Yu. N. (Ed.) (1981). Vodorod v metallah. Moscow: Mir, 475.

  • Kolachev, B. A., Levinskiy, Yu. V. (Ed.) (1987). Konstanty vzaimodeystviya metallov s gazami. Moscow: Metallurgiya, 368.

  • Mihaylovskiy, Yu. N., Strekalov, P. V. (1972). Kinetika nachal'nyh stadiy okisleniya cinka v atmosfere kisloroda i vlazhnogo vozduha. Zaschita metallov, 8 (2), 146–151.

  • Filyand, M. A., Semenova, E. I. (1964). Svoystva redkih elementov. Moscow: Metallurgiya, 913.

  • Pauell, K. (Ed.) (1970). Osazhdenie iz gazovoy fazy. Moscow: Atomizdat, 471.

  • Danilin, B. S. (1989). Primenenie nizkotemperaturnoy plazmy dlya naneseniya tonkih plenok. Moscow: Energoatomizdat, 328.

  • Glazunov, G. P., Svinarenko, A. D., Kosiv, N. L. et. al. (1980). Otkachka vodoroda palladiem s pokrytiem cirkoniy-alyuminievyh splavov. Voprosy atomnoy nauki i tehniki. Seriya "Obschaya i yadernaya fizika ", 4 (14), 87–90.

  • Glazunov, G. P., Sagalovich, V. V. Ternopol, A. M., Volkov, E. D., Yuferov, V. B. (1983). Vodorodopronicaemost' palladiya posle obrabotki plazmoy tleyuschego razryada. Voprosy atomnoy nauki i tehniki. Seriya FRPRM, 4 (27), 63–65.

  • Lifshic, I. M., Slezov, V. V. (1958). O kinetike diffuzionnogo raspada peresyschennyh tverdyh rastvorov. ZhETF, 35 (2), 479–492. Available at: http://chair.itp.ac.ru/biblio/papers/ClassicPapersSeminar/LifshitsSlezov1958.pdf

  • Lifshitz, I. M., Slyozov, V. V. (1961). The kinetics of precipitation from supersaturated solid solutions. Journal of Physics and Chemistry of Solids, 19 (1-2), 35–50. doi: https://doi.org/10.1016/0022-3697(61)90054-3

  • Slezov, V. V., Sagalovich, V. V. (1975). Teoriya koalescencii v mnogokomponentnyh mnogofaznyh sistemah. Fizika tverdogo tela, 17, 1497–1499.

  • Slezov, V. V., Sagalovich, V. V. (1977). Theory of diffusive decomposition of supersaturated multicomponent systems. Journal of Physics and Chemistry of Solids, 38 (9), 943–948. doi: https://doi.org/10.1016/0022-3697(77)90193-7

  • Slezov, V. V., Sagalovich, V. V. (1987). Diffusive decomposition of solid solutions. Uspekhi Fizicheskih Nauk, 151 (1), 67–104. doi: https://doi.org/10.3367/UFNr.0151.198701c.0067

  • Slezov, V. V., Sagalovich, V. V., Tanatarov, L. V. (1978). Theory of diffusive decomposition of supersaturated solid solution under the condition of simultaneous operation of several mass-transfer mechanisms. Journal of Physics and Chemistry of Solids, 39 (7), 705–709. doi: https://doi.org/10.1016/0022-3697(78)90002-1

  • Portnoy, K. I. (1968). Dispersno-uprochnyaemye zharoprochnye splavy. Poroshkovaya metallurgiya: Materialy IX Vsesoyuznoy konf. po poroshkovoy metallurgii. Riga: Latv. in-t NTI, 205–208.

  • Sergeenkova, V. M., Berezuckiy, V. V. (1968). Rost dispersnyh okisnyh chastic v metallokeramicheskom nikele. Poroshkovaya metallurgiya: Materialy IX Vsesoyuznoy konferencii po poroshkovoy metallurgii. Riga: Latv. in-t NTI, 219.

  • Footner, P. K., Alcock, C. B. (1972). Growth kinetics of dispersed thoria in Ni and Ni-Cr alloys. Metallurgical Transactions, 3 (10), 2633–2637. doi: https://doi.org/10.1007/bf02644239

  • Martin, Dzh., Doerti, R. (1978). Stabil'nost' mikrostruktury metallicheskih sistem. Moscow: Atomizdat, 280.

  • Kreydera, K. (Ed.) (1978). Kompozicionnye materialy s metallicheskoy matricey. Vol. 4. Moscow: Mir, 503.

  • Mozzhuhin, E. I. (1968). O termicheskoy stabil'nosti dispersnyh okisnyh vklyucheniy. V kn.: Vysokotemperaturnye materialy. Moscow: Metallurgiya, 79.

  • Mehan, R., Nun, M. (1974). Nikelevye splavy, uprochnennye voloknami -Al2O3. V kn.: Kompozicionnye materialy s metallicheskoy matricey. Vol. 4. Moscow: Mir, 165.

  • Balliger, N. K., Honeycombe, R. W. K. (1980). Coarsening of vanadium carbide, carbonitride, and nitride in low-alloy steels. Metal Science, 14 (4), 121–133. doi: https://doi.org/10.1179/030634580790426337

  • Zwilsky, K. M., Grant, N. Y. (1961). Dispersion strenghtening in the copper-aluminium system. Trans AIME, 221, 371.

  • Chuistov, K. V. (1975). Modulirovannye struktury v stareyuschih splavah. Kyiv: Naukova dumka, 232.

  • Berezhnoy, A. S. (1968). O subsolidusnom stroenii mnogokomponentnyh fiziko-himicheskih sistem. UHZh, 9, 920.

  • Kofstad, P. (1975). Otklonenie ot stehiometrii, diffuziya i elektroprovodnost' v prostyh okislah metallov. Moscow: Mir, 396.

  • Kiryuhin, N. M., Sagalovich, A. V., Sagalovich, V. V., Chabanovskiy, V. N. (1991). Chislennoe modelirovanie processov diffuzionnogo raspada. Kharkiv, 15.

  • Simson, A. E., Homich, A. Z., Kuric, A. A. et. al. (1980). Dvigateli vnutrennego sgoraniya. Teplovoznye dizeli, gazoturbinnye ustanovki. Moscow: Transport, 389.

  • Antipov, V. V. (1972). Iznos precizionnyh detaley i narushenie harakteristiki toplivnoy apparatury dizeley. Moscow: Mashinostroenie, 177.

  • Sagalovich, A. V., Dudnik, S. F., Lyubchenko, A. P., Oleynik, A. K., Sagalovich, V. V. (2008). Uprochnenie kromok maslos'emnyh porshnevyh kolec dizelya D80 nanokompozitnymi pokrytiyami na osnove Ti-Al-N. Nanostrukturnye materialy. Mater. Pervoy mezhdunar. Nauchn. Konf. NANO-2008. Minsk.

  • Polyanin, B. I. et. al. (1985). Vakuumno-plazmennaya kondensaciya bronzy. Aviacionnaya promyshlennost', 5, 60–62.

  • Dudnik, S. F., Sagalovich, A. V., Sagalovich, V. V., Lyubchenko, A. P., Oleynik, A. K. (2006). Issledovanie tribologicheskih harakteristik mnogosloynyh pokrytiy. Mater. Mezhd. Konf. po nerazrushayuschemu kontrolyu. Berlin.

  • Sagalovich, A. V., Sagalovich, V. V., Lyubchenko, A. P., Oleynik, A. K. (2008). Issledovanie tonkosloynyh vakuumnyh pokrytiy dlya detaley toplivnoy apparatury teplovoznyh dizel'nyh dvigateley. Mater. XIV Mezhd. konf. «Fizicheskie i komp'yuternye tehnologii v narodnom hozyaystve». Kharkiv, 28–32.

  • Sagalovich, A. V., Sagalovich, V. V., Dudnik, S. F., Oleynik, A. K. (2008). Issledovanie tonkosloynyh vakuumnyh pokrytiy dlya detaley toplivnoy apparatury. Mater. Mezhd. konf. «Ispol'zovanie pnevmaticheskoy energii i oborudovaniya dlya ee polucheniya v gornorudnoy otrasli». Sumy.

  • Sahalovych, O. V., Sahalovych, V. V. (2013). Pat. No. 89830 UA. Kompozytsiyne pokryttia dlia aliuminiu abo yoho splaviv. No. u201315445; declareted: 30.12.2013; published: 25.04.2014, Bul. No. 8. Available at: https://uapatents.com/7-89830-kompozicijjne-pokrittya-dlya-alyuminiyu-abo-jjogo-splaviv.html

  • Sagalovich, A. V., Sagalovich, V. V. (2014). Pat. No. 2585112 RU. Composite coating for aluminium or alloys thereof. No. 2014101978/02; declareted: 22.01.2014; published: 27.05.2016, Bul. No. 15. Available at: https://patents.s3.yandex.net/RU2585112C2_20160527.pdf

  • Sagalovich, A. V., Sagalovich, V. V., Dudnik, S. F., Lyubchenko, A. P., Oleynik, A. K. (2005). Nanesenie antizadirnyh i iznosostoykih pokrytiy na porshni iz alyuminievogo splava dizeley tipa D80. Sovmestnyy nauchno-tehnicheskiy otchet NTC «Nanotehnologiya» i GP «Zavod im. Malysheva». Kharkiv, 27.

  • Dudnik, S. F., Lubchenko, A. P., Оleynik, А. K., Sagalovich, А. V., Sagalovich, V. V. (2004). The investigation of friction and wear characteristics of ion-plasma coatings, received on the aluminum alloy. Fizicheskaya inzheneriya poverhnosti, 2 (1-2), 112–116. Available at: http://dspace.nbuv.gov.ua/bitstream/handle/123456789/98482/16-Dudnik.pdf?sequence=1

  • Sagalovych, А. V., Dudnik, S. F., Lubchenko, А. P., Оleynik, А. K., Sagalovych, V. V. (2006). The Investigation of Friction and Wear Characteristics of Ion-Plasma Coatings, Received on the Aluminum Alloy. Proc. Int. Symp. on Tribology. Amsterdam.

  • Sagalovich, A. V., Sagalovich, V. V., Dudnik, C. F., Oleynik, A. K., Moschenok, V. A. (2009). Opredelenie tribotehnicheskih harakteristik kompozitnyh ionno-plazmennyh pokrytiy dlya porshnevyh kolec dizel'nyh dvigateley. Vestnik HNADU, 46, 111–113.

  • Sagalovich, A. V., Dudnik, S. F., Sagalovich, V. V. et. al. (2001). Nanesenie opytnyh pokrytiy na stal'nye detali "Gayka nazhimnaya 457.81.027-1. Otchet HKBD.

  • Popov, V., Loginov, V., Ukrainets, Y., Shmyrov, V., Steshenko, P., Hlushchenko, P. (2020). Improving aircraft fuel efficiency by using the adaptive wing and winglets. Eastern-European Journal of Enterprise Technologies, 2 (1 (104)), 51–59. doi: https://doi.org/10.15587/1729-4061.2020.200664

  • Kostyuk, G. I., Popov, V. V. (2019). Scientific principles of designing information of a cutting tool with nano coatings and nanostructures. Open Information and Computer Integrated Technologies, 83, 81–97. doi: https://doi.org/10.32620/oikit.2019.83.06

  • Kostyuk, G. I., Popov, V. V., Romanov, M. S., Torosyan, G. D., Kostyuk, E. G. (2019). Machining of hard-to-work alloys with cutting tools with nanostructures. Open Information and Computer Integrated Technologies, 85, 96–110. doi: https://doi.org/10.32620/oikit.2019.85.05

  • Kostyuk, G., Popov, V. (2019). Improving the resource and reliability of details from zirconium alloys during the application of nanocoating and formation of nanostructures. Visnyk Natsionalnoho tekhnichnoho universytetu «KhPI». Seriya: Tekhnolohiy v mashynobuduvanni, 19 (1344), 40–50. Available at: http://repository.kpi.kharkov.ua/bitstream/KhPI-Press/42270/1/vestnik_KhPI_2019_19_Kostyuk_Povyshenie_resursa.pdf

  • Kostyuk, G. I., Popov, V. V., Kostyk, K. O. (2019). Design of the cutting tool material taking into account the type of nanocoating hardening. Technological Systems, 2 (87), 25–37. doi: http://dx.doi.org/10.29010/087.3

  • Kostyuk, G. I., Grigor, O. D., Popov, V. V., Kostyuk, E. G. (2018). Sravnenie temperaturnyh rezhimov i napryazhennogo sostoyaniya splava «VOLKAR» pri ispol'zovanii teplofizicheskih i termomehanicheskih harakteristik. Proceedings of XII International conference on science an deducation. Oslo, 45–48. Available at: http://library.khnu.km.ua/wp-content/uploads/2019/02/konfer_hnu/SE2018.pdf

  • Kostyuk, G. I., Romanov, M. S., Torosyan, G. D., Popov, V. V. (2019). Effektivnost' i rabotosposobnost' rezhuschego instrumenta iz modificirovannogo tverdogo splava VK10 s pokrytiem 0,18HfN+0,82ZrN pri frezerovanii titanovogo splava VT22. Proceedings of XІІI Internationalconference on scienceand education. Hajduszoboszlo, 55–57.

  • Kostyuk, G. I., Popov, V. V., Bryika, O. O. (2019). Study of energy ions, their varieties and charge on temperature, rate of temperature rise, thermal stresses for nanostructureson steel materials. Proceedings of XIV International conference on modern achievements of science and education. Netanya, 63–66. Available at: https://er.nau.edu.ua/bitstream/NAU/42327/1/Study%20of%20Energy%20Ions%2c%20their%20Varieties%20and%20Charge%20on%20Temperature%2c%20Rate%20of%20Temperature%20Rise.pdf

  • Kostyuk, G. I., Popov, V. V., Bruyaka, O. O. (2020). Perspektivy konstruirovaniya materiala RI i ego geometrii s uchetom uprochneniya i obrabatyvaemogo materiala. XІV International conference on science and education, Hajduszoboszlo, 40–42. Available at: http://elar.khnu.km.ua/jspui/handle/123456789/8571

  • Kostyuk, G. I., Popov, V. V. (2019). Nauchnye principy konstruirovaniya rezhuschego instrumenta s nanopokrytiyami i nanostrukturami. XXIX International Conference "New Leading Technologies in Machine Building". Koblevo-Kharkiv, 9.

  • Kostyuk, G. I., Popov, V. V., Yevsieienkova, H. V., Torosyan, G. D. (2020). Prospects for designing the chemical composition of hard alloys, taking into account their hardening due to the formation of nanostructures. Suchasni tekhnolohiyi u promyslovomu vyrobnytstvi: tezy dop. VII Vseukr. nauk.-tekhnol. konf. Sumy, 89–90. Available at: https://essuir.sumdu.edu.ua/bitstream-download/123456789/78515/1/stpv_2020.pdf;jsessionid=F702AFAB446AEFE841A8794C83358AE4

  • Popov, V., Kostyuk, G., Tymofyeyev, O., Kostyk, K., Naboka, O. (2020). Design of New Nanocoatings Based on Hard Alloy. Lecture Notes in Mechanical Engineering, 522–531. doi: https://doi.org/10.1007/978-3-030-50794-7_51

  • Kostyuk, G., Popov, V., Kostyk, K. (2019). Computer Modeling of the obtaining nanostructures process under the action of laser radiation on steel. Proceedings of the Second International Workshop on Computer Modeling and Intelligent Systems (CMIS-2019). Zaporizhzhia, 729–743. Available at: http://ceur-ws.org/Vol-2353/paper58.pdf

  • Popov, V., Kostyuk, G., Nechyporuk, M., Kostyk, K. (2020). Study of Ions Energy, Their Varieties and Charge on Temperature, Rate of Temperature Rise, Thermal Stresses for Nanostructures on Construction Materials. Advanced Manufacturing Processes, 470–477. doi: https://doi.org/10.1007/978-3-030-40724-7_48

  • Kostyuk, G., Popov, V., Kostyk, K. (2020). Volume of the Nanocluster and Its Depth at Effect of Ions of Different Energies, Varieties and Charges on Titanium Alloy VT-1. Advanced Manufacturing Processes, 415–423. doi: https://doi.org/10.1007/978-3-030-40724-7_42

  • Popov, V. (2020). Perspektyvni napriamky rozvytku ahrehatobuduvannia u aviatsiyniy haluzi ta mashynobuduvanni. Proceedings XXX International Conference «New Leading Technologies In Machine Building». Koblevo-Kharkiv, 17. Available at: https://khai.edu/assets/documents/3205/%D0%A1%D0%B1%D0%BE%D1%80%D0%BD%D0%B8%D0%BA%20%D1%82%D0%B5%D0%B7%D0%B8%D1%81%D0%BE%D0%B2%202020.pdf

  • Goloschapov, F. A., Kuznecov, I. A., Petrov, V. P., Pestov, Yu. A., Semenov, V. N., Derkach, G. G., Dodonov, A. I. (2000). Pat. No. 2000109697A RU. Method of ion-plasma application of coatings on a substrate. No. 2000109697/02; declareted: 20.04.2000; published: 10.04.2002. Available at: https://patents.google.com/patent/RU2000109697A/en

  • Karpman, M. G., Fetisov, G. P., Saydahmedov, R. H. (1992). Pat. No. 2025543 RU. Wear resistant ion-plasma coating and method to obtain wear resistant coating. No. 5033556/21; declareted: 24.03.1992; published: 30.12.1994. Available at: https://patentimages.storage.googleapis.com/62/83/93/a293e120913164/RU2025543C1.pdf

  • Shchanin, P. M., Koval', N. N., Borisov, D. P., Goncharenko, I. M. (1998). Pat. No. 2131480 RU. Method of wear-resistant coating formation on surface of articles made of structural steel. No. 97112300/02; declareted: 07.15.1998; published: 10.06.1999. Available at: https://yandex.ru/patents/doc/RU2131480C1_19990610

  • Vajnshtejn, D. L., Kovalev, A. I. (2010). Pat. No. 2405060 RU. (TixAlyCrz)N-Based Ion-Plasma Coar For Cutting Tools. No. 2009137989/02; declareted: 15.10.2009; published: 27.11.2010. Available at: https://yandex.ru/patents/doc/RU2405060C1_20101127

  • Chumikov, A. B., Akif'ev, V. A., Sizyh, Yu. N. (2000). Pat. No. 2210621 RU. Sposob kombinirovannoy vakuumnoy ionno-plazmennoy obrabotki instrumenta. No. 2000123120/02; declareted: 05.09.2000; published: 20.08.2003. Available at: https://www.freepatent.ru/patents/2210621

  • Pat. No. 2009/0123737 US. Coated Surface Coating Resistant to Erosion by Solid Particles. published: 14.05.2009.

  • Sagalovich, A. V., Dudnik, S. F., Sagalovich, V. V. (2005). Mnogokomponentnye nanostrukturnye pokrytiya vpn dlya rezhuschego instrumenta. Instrumentalnyi svit, 1 (25), 15–16.

  • Sagalovich, A. V., Dudnik, S. F., Sagalovich, V. V. (2007). Povyshenie resursa raboty vyrubnogo i press-shtampovogo instrumenta putem primeneniya iznosostoykih pokrytiy. Oborudovanie i instrument, 5, 329–334.

  • Sagalovich, A. V., Dudnik, S. F., Sagalovich, V. V., Zvonik, A. A. (2005). Uprochnyayuschie pokrytiya dlya formoizmenyayuschih chastey shtampov. Oborudovanie i instrument, 10, 1–4.

  • Sagalovich, A. V., Dudnik, S. F., Sagalovich, V. V. (2005). Nanotehnologii-promyshlennye tehnologii XXI veka. Oborudovanie i instrument, 6, 46–49.

  • Ostapchuk, D. P., Sahalovych, O. V., Sahalovych, V. V. (2014). Pat. No. 95071 UA. Sposib formuvannia znosostiykoho ionno-plazmovoho pokryttia dlia rizhuchoho i formotvornoho instrumentu. No. u201406979; declareted: 20.06.2014; published: 10.12.2014, Bul. No. 23. Available at: https://uapatents.com/7-95071-sposib-formuvannya-znosostijjkogo-ionno-plazmovogo-pokrittya-dlya-rizhuchogo-i-formotvornogo-instrumentu.html

  • Sahalovych, V. V., Sahalovych, O. V., Ostapchuk, D. P. (2014). Pat No. 111514 UA. Znosostiyke ionno-plazmove pokryttia dlia rizhuchoho i formotvornoho instrumenta i sposib yoho oderzhannia. No. a201406976; declareted: 20.06.2014; published: 10.05.2016, Bul. No. 9. Available at: https://uapatents.com/8-111514-znosostijjke-ionno-plazmove-pokrittya-dlya-rizhuchogo-i-formotvornogo-instrumenta-i-sposib-jjogo-oderzhannya.html

35
1
views
downloads
Views 35
Downloads 1
Data volume 19.1 MB
Unique views 31
Unique downloads 1

Share

Cite as