Published October 25, 2021 | Version v2
Dataset Open

Fractal Analysis of Clouds in DYAMOND Summer Simulations (revised)

  • 1. University of Oxford

Description

Data accompanying "The Fractal Nature of Clouds in Global Storm-Resolving Models", by H. M. Christensen and O. Driver, submitted to Geophysical Research Letters.

 

Summary

We compute the fractal dimension of clouds in the DYAMOND Summer simulations: https://www.esiwace.eu/services/dyamond/summer
This is compared to the dimension computed using the Himawari 8 satellite.

The simulations span 1 August--10 September 2016. We use data between 25oS-25oN, 80-200oE. A binary cloud field is defined for the model simulations using outgoing long wave radiation using a given threshold. For Himawari observations we use the derived Cloud Top Temperature product, with a consistent threshold: see paper for details. Any pixel with outgoing long wave radiation or cloud top temperature below these values is defined as 'cloudy'.

 

Available model and satellite derived data

[model identifier]_clouds_230.csv

Contains sets of Area-Perimeter data couplets for each selected timestamp in the DYAMOND simulation indicated by [model identifier], using the 230 K cloud top temperature threshold.

[model identifier]_dims_threshold.csv

Contains the fractal dimension measured for each selected timestamp in the DYAMOND simulation indicated by [model identifier], as a function of threshold. This is the Area-Perimeter fractal dimension, \(P \propto A^{D/2}\). This can be obtained as the gradient of the regression line through the logarithm of the data in the 'clouds' files, multiplied by two. Data are provided for the following thresholds: 200, 210, 220, 230, 240, 250, 260 K.

Since the satellite fields are only available during daylight hours, we provide and analyse the data at 0200, 0300, and 0400 UTC for both satellite and model data (or the closest available timestamp to these times for each model).

 

Acknowledgements

H.M.C. was funded by Natural Environment Research Council grant number NE/P018238/1.

DYAMOND data management was provided by the German Climate Computing Center (DKRZ) and supported through the projects ESiWACE and ESiWACE2. The projects ESiWACE and ESiWACE2 have received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreements No 675191 and 823988. This work used resources of the Deutsches Klimarechenzentrum (DKRZ) granted by its Scientific Steering Committee (WLA) under project IDs bk1040 and bb1153.

Files

FV3_clouds_230.csv

Files (94.3 MB)

Name Size Download all
md5:68f9256c57f46a996204d196ada226a2
496.0 kB Preview Download
md5:20b2a39461c07e89cdc56e69dc474109
18.2 kB Preview Download
md5:5b2f6e9de082edce44c76e0ea7e320ea
18.2 kB Preview Download
md5:f7642600e49d4833a8589503a7397c91
337.6 kB Preview Download
md5:5b2f6e9de082edce44c76e0ea7e320ea
18.2 kB Preview Download
md5:46b8e9082393464952f6a715bf705d60
4.7 kB Preview Download
md5:8a9fcfdf80d171f5bdbaa1fd86880125
18.2 kB Preview Download
md5:dc2dd85fae7c295ca65ce3d65d20bf01
2.1 MB Preview Download
md5:8a9fcfdf80d171f5bdbaa1fd86880125
18.2 kB Preview Download
md5:7258e0566181a9c00d1b7814a7421749
4.7 kB Preview Download
md5:d583616b804ad2ea0fe70c9209482312
786.3 kB Preview Download
md5:8a850ca4eeddc50d8614d029abd409e1
18.1 kB Preview Download
md5:7ad0c5ca3cddada58256b1ec030a7880
4.7 kB Preview Download
md5:18c0ac3c40f9b35a13f85800429194af
956.6 kB Preview Download
md5:e7d4d9adce1583407fb15f72e49f0c57
18.2 kB Preview Download
md5:f8f90ecdf807d3590681dd865428f1a0
4.7 kB Preview Download
md5:4893b382113aea3d13fe62f16120c038
473.2 kB Preview Download
md5:c88bfa73998d50b3038073de335037cc
18.2 kB Preview Download
md5:8d9f3e5e60e9dab4871f332140e6527e
4.7 kB Preview Download
md5:c90b82b787f8a118e03d2de948b79251
1.5 MB Preview Download
md5:f085ddfd32a72718367b6a20e2953262
371.0 kB Preview Download
md5:75afc32e52fb0bccada4301f405e3563
41.0 kB Preview Download
md5:1e15910160fda9d5e81d38d7e1cab4a7
17.9 kB Preview Download
md5:2f31d93592eabd560c3a433d902d8a9b
18.2 kB Preview Download
md5:44a53ffcddd3fb3ff8db4b98c020d33f
4.7 kB Preview Download
md5:56a1122b9eadf2dcd6f31362f71cab20
18.2 kB Preview Download
md5:89e18fcbe7462f707187bbc2d1451435
16.7 MB Preview Download
md5:60fed23dc33373ec4bd044acebff5b2e
575.0 kB Preview Download
md5:56a1122b9eadf2dcd6f31362f71cab20
18.2 kB Preview Download
md5:24da820b280d0489102cdc7a9d8fb141
444.5 kB Preview Download
md5:0834a4cec1051904c6431a7049584be8
4.7 kB Preview Download
md5:24da820b280d0489102cdc7a9d8fb141
444.5 kB Preview Download
md5:2f31d93592eabd560c3a433d902d8a9b
18.2 kB Preview Download
md5:55296745e8eab6e9312efc89098410d2
389.4 kB Preview Download
md5:81ddde9a9f1dca32d99facceda2c21dc
4.7 kB Preview Download
md5:55296745e8eab6e9312efc89098410d2
389.4 kB Preview Download
md5:1f622ae6ac1a30e611b83bef53479570
166.8 kB Preview Download
md5:691c4c7f8f10bff9c2a18516e19c30a0
18.2 kB Preview Download
md5:a98786ed39713e0c98f7659ca1a27d72
13.5 MB Preview Download
md5:da0eb8f8d6b4a3031559723eb6226bb1
166.9 kB Preview Download
md5:9d2b879ca705ee72b1347fdd0668b3b1
452.1 kB Preview Download
md5:938452d9f728e3f4a2884cb1586f3ec1
4.6 kB Preview Download
md5:9d2b879ca705ee72b1347fdd0668b3b1
452.1 kB Preview Download
md5:ee5cb03f027b12d0a501ec5bee2d040d
18.2 kB Preview Download
md5:ef7fd8a32d4632ee13b95eb36148221a
645.7 kB Preview Download
md5:1ee108bc624ab50af81a102f31cfd247
4.7 kB Preview Download
md5:5283292f4ae0adb74429394efdd15049
18.2 kB Preview Download
md5:f8334d5dd0bf3f2a2d8f543afd7312cb
19.6 MB Preview Download
md5:ef7fd8a32d4632ee13b95eb36148221a
645.7 kB Preview Download
md5:9912663aafa3132fa95bb7364c83345c
166.9 kB Preview Download
md5:5283292f4ae0adb74429394efdd15049
18.2 kB Preview Download
md5:08feebe8e40c7206371cb764b6aba43a
560.5 kB Preview Download
md5:deb7ab525701375e777f370a386d6ce7
4.7 kB Preview Download
md5:8a7c0819ac765575017395401aa7ac93
18.2 kB Preview Download
md5:37226937d1a7d631ffcb10225de93ce0
14.8 MB Preview Download
md5:08feebe8e40c7206371cb764b6aba43a
560.5 kB Preview Download
md5:8a1c6643ed066ccae6366154db850dfb
166.9 kB Preview Download
md5:8a7c0819ac765575017395401aa7ac93
18.2 kB Preview Download
md5:05867d680ad1a82cde36566bda5d0fb2
816.2 kB Preview Download
md5:c4d5ba0e561d3561898f58e10a26ad73
4.7 kB Preview Download
md5:e6bc9bc38ead5661b1229f52f183c834
18.2 kB Preview Download
md5:93d438b06ff8d375151c20194448540c
10.8 MB Preview Download
md5:05867d680ad1a82cde36566bda5d0fb2
816.2 kB Preview Download
md5:cd9b196febf184d8f65f2e9254a31db4
82.9 kB Preview Download
md5:e6bc9bc38ead5661b1229f52f183c834
18.2 kB Preview Download
md5:af9fa08c4f1dd836ed9d3d298596abf0
364.3 kB Preview Download
md5:18bdc9bde096ae40126acb2c346adde3
4.7 kB Preview Download
md5:328abe9116e10f23e50738b9693e845f
18.2 kB Preview Download
md5:db70e50ca53066abac3022493b89623a
2.4 MB Preview Download
md5:af9fa08c4f1dd836ed9d3d298596abf0
364.3 kB Preview Download
md5:115438d7ace2a406ff04c2b9a2eb3521
41.0 kB Preview Download
md5:328abe9116e10f23e50738b9693e845f
18.2 kB Preview Download

Additional details

Funding

UK Research and Innovation
Reliable Climate Projections: The Final Frontier for Stochastic Parametrisation NE/P018238/1