Journal article Open Access

Sestrin prevents atrophy of disused and aging muscles by integrating anabolic and catabolic signals

Segalés, Jessica; Perdiguero, Eusebio; Serrano, Antonio L.; Sousa-Victor, Pedro,; Ortet, Laura; Jardí, Mercè; Budanov, Andrei V.; Garcia-Prat, Laura; Sandri, Marco; Thomson, David M.; Michael, Karin; Lee, Jun Hee; Muñoz-Cánoves, Pura


A unique property of skeletal muscle is its ability to adapt its mass to changes in activity. Inactivity, as in disuse or aging, causes atrophy, the loss of muscle mass and strength, leading to physical incapacity and poor quality of life. Here, through a combination of transcriptomics and transgenesis, we identify sestrins, a family of stress-inducible metabolic regulators, as protective factors against muscle wasting. Sestrin expression decreases during inactivity and its genetic deficiency exacerbates muscle wasting; conversely, sestrin overexpression suffices to prevent atrophy. This protection occurs through mTORC1 inhibition, which upregulates autophagy, and AKT activation, which in turn inhibits FoxO-regulated ubiquitin–proteasome-mediated proteolysis. This study reveals sestrin as a central integrator of anabolic and degradative pathways preventing muscle wasting. Since sestrin also protected muscles against aging-induced atrophy, our findings have implications for sarcopenia.

Files (1.7 MB)
Name Size
Segales et al 2020.pdf
1.7 MB Download
Views 31
Downloads 26
Data volume 42.9 MB
Unique views 28
Unique downloads 26


Cite as