Journal article Open Access

Reliable E-Nose System using the Improved Optimization Technique based ANN

Jambi Ratna Raja Kumar; Rahul K. Pandey; Biplab K. Sarkar

Sponsor(s)
Blue Eyes Intelligence Engineering & Sciences Publication(BEIESP)

Since from last decade, there is a growing interest in a system that detects the pollutant gases and other environmental information is called Electronic Nose (E-Nose) networks. The gases such as methanol, Liquid Petroleum Gases, ammonia, etc. are harmful for human beings; therefore, such frailness required detecting automatically as well as safety alarm promoted in a specific field. The critical challenges of the E-nose system are efficient to detect with minimum error and overhead. In this paper, we targeted to design the optimized machine learning-based algorithm to detect and alert the pollutant gases, Humidity, O2 Level, and Air Temperature in the real-time datasets. We initiated E-nose design using Artificial Neural Network (ANN). Using essential ANN leads to poor accuracy and error rates, as they failed to select the best solutions during the training process. Thus, we next use the Particle Swarm Optimization (PSO) based ANN called ANN-PSO to improve the accuracy rate and error performances for E-Nose systems. Finally, the proposed Improved Optimization Technique based ANN (IOT-ANN) machine learning model designed and evaluated in current this research work. The IoT-ANN it is based on a bio-inspired algorithm to achieve reliable training during the E-Nose prediction.

Files (767.3 kB)
Name Size
A9350109119.pdf
md5:0dbc969d631bb8b186f6741e69905359
767.3 kB Download
11
7
views
downloads
Views 11
Downloads 7
Data volume 5.4 MB
Unique views 7
Unique downloads 7

Share

Cite as