Service Incident: New DOI registrations are working again. Re-registration of failed DOI registrations (~500) are still affected by the service incident at DataCite (our DOI registration agency).
Published June 30, 2021 | Version v1
Other Open

Data on DOI:10.1021/jacs.0c03444

  • 1. SUPSI - DTI
  • 2. POLITO - DISAT, SUPSI - DTI

Description

Photoswitchable molecules are employed for many applications, from the development of active materials to the design of stimuli-responsive molecular systems and light-powered molecular machines. To fully exploit their potential, we must learn ways to control the mechanism and kinetics of their photoinduced isomerization. One possible strategy involves confinement of photoresponsive switches such as azobenzenes or spiropyrans within crowded molecular environments, which may allow control over their light-induced conversion. However, the molecular factors that influence and control the switching process under realistic conditions and within dynamic molecular regimes often remain difficult to ascertain. As a case study, here we have employed molecular models to probe the isomerization of azobenzene guests within a Pd(II)-based coordination cage host in water. Atomistic molecular dynamics and metadynamics simulations allow us to characterize the flexibility of the cage in the solvent, the (rare) guest encapsulation and release events, and the relative probability/kinetics of light-induced isomerization of azobenzene analogues in these host–guest systems. In this way, we can reconstruct the mechanism of azobenzene switching inside the cage cavity and explore key molecular factors that may control this event. We obtain a molecular-level insight on the effects of crowding and host–guest interactions on azobenzene isomerization. The detailed picture elucidated by this study may enable the rational design of photoswitchable systems whose reactivity can be controlled via host–guest interactions.

Files

Files (44.6 GB)

Name Size Download all
md5:4a745e9f80ecc320f4bedee79d3d34c3
44.6 GB Download

Additional details

Funding

Multiscale Modeling of Self-Assembled Polymeric Nanocarriers Responding to Specific Protein Stimuli 200021_175735
Swiss National Science Foundation
DYNAPOL – Modeling approaches toward bioinspired dynamic materials 818776
European Commission