Published October 18, 2016 | Version v1
Dataset Open

Data from: Foraging environment determines the genetic architecture and evolutionary potential of trophic morphology in cichlid fishes

  • 1. University of Glasgow
  • 2. University of Massachusetts Amherst

Description

Phenotypic plasticity allows organisms to change their phenotype in response to shifts in the environment. While a central topic in current discussions of evolutionary potential, a comprehensive understanding of the genetic underpinnings of plasticity is lacking in systems undergoing adaptive diversification. Here, we investigate the genetic basis of phenotypic plasticity in a textbook adaptive radiation, Lake Malawi cichlid fishes. Specifically, we crossed two divergent species to generate an F3 hybrid mapping population. At early juvenile stages, hybrid families were split and reared in alternate foraging environments that mimicked benthic/scraping or limnetic/sucking modes of feeding. These alternate treatments produced a variation in morphology that was broadly similar to the major axis of divergence among Malawi cichlids, providing support for the flexible stem theory of adaptive radiation. Next, we found that the genetic architecture of several morphological traits was highly sensitive to the environment. In particular, of 22 significant quantitative trait loci (QTL), only one was shared between the environments. In addition, we identified QTL acting across environments with alternate alleles being differentially sensitive to the environment. Thus, our data suggest that while plasticity is largely determined by loci specific to a given environment, it may also be influenced by loci operating across environments. Finally, our mapping data provide evidence for the evolution of plasticity via genetic assimilation at an important regulatory locus, ptch1. In all, our data address long-standing discussions about the genetic basis and evolution of plasticity. They also underscore the importance of the environment in affecting developmental outcomes, genetic architectures, morphological diversity and evolutionary potential.

Notes

Funding provided by: National Science Foundation
Crossref Funder Registry ID: http://dx.doi.org/10.13039/100000001
Award Number: IOS-1054909

Files

All_F3_phenotypes.csv

Files (472.3 kB)

Name Size Download all
md5:e261d484fa40e46abfcaa0a7b9af0bf8
322.1 kB Preview Download
md5:b0eb36d8c5685d98ebd47f9fbb2f78c0
86.8 kB Preview Download
md5:37b285868e7426eb96a3688c4babfb8a
63.4 kB Download

Additional details

Related works

Is cited by
10.1111/mec.13801 (DOI)