There is a newer version of this record available.

Journal article Open Access


CARDOSO, Daniel Souza

Nesta análise verificou-se a aderência do principio de conservação da energia mecânica do fóton (CEF) à descrição dos redshifts gravitacional e cosmológico. Constatou-se que o redshift z(CEF) explica completamente a natureza gravitacional, refrativa e doppler do redshift cosmológico. O redshift z(CEF) mostra-se capaz de descrever variações de redshift mantendo H0 constante. Verificou-se as características de uma matéria desconhecida (DM), invisível e com índice de refração negativo e relativístico, possivelmente matéria escura. Apresenta-se a classificação dos domínios do redshift cosmológico para altas e baixas velocidades da DM.

Files (447.5 kB)
Name Size
447.5 kB Download
  • ARP, H.; FULTON, C.; CAROSATI, D. Intrinsic Redshifts in Quasars and Galaxies. 2013

  • Ashmore, Lyndon E. Calculating the redshifts of distant galaxies from first principles by the new tired light theory (NTL). JIOP Conf. Series: Journal of Physics: Conf. Series 1251 (2019) 012007.

  • Bouchard, F., Harris, J., Mand, H., Boyd, RW & Karimi, E. Observation of subluminal twisted light in vacuum. Optica 3, 351–354 (2016)

  • CARDOSO, Daniel Souza. A conservação da energia mecânica do fóton, em energia cinética rotacional, frente à alguns resultados e expectativas teóricas com interferômetros de Michelson na literatura. Ciência e Natura, v. 40, p. e59, 2018.

  • CARDOSO, Daniel Souza. Theory of Conservation of Photon Mechanical Energy , in the Transition between Two Middles , in Rotational Kinetic Energy. International Journal of Science and Research (IJSR) 7 (7), 810-815.

  • Chyla, W. T. (2013). Refraction in a relativistic medium. Optik - International Journal for Light and Electron Optics, 124(13), 1477–1479. doi:10.1016/j.ijleo.2012.04.012

  • DO, Tuan et al. Relativistic redshift of the star S0-2 orbiting the Galactic center supermassive black hole. Science, v. 365, n. 6454, p. 664-668, 2019.

  • EINSTEIN, Albert. Über den Einfluß der Schwerkraft auf die Ausbreitung des Lichtes. Annalen der Physik, v. 340, n. 10, p. 898-908, 1911.

  • F. Zwicky .ON THE REDSHIFT OF SPECTRAL LINES THROUGH INTERSTELLAR SPACE .Proceedings of the National Academy of Sciences Oct 1929, 15 (10) 773-779; DOI: 10.1073/pnas.15.10.773

  • FERRERAS, Ignacio; TRUJILLO, Ignacio. Testing the wavelength dependence of cosmological redshift down to Δz∼ 10− 6. The Astrophysical Journal, v. 825, n. 2, p. 115, 2016.

  • Gardner, S., Latimer, D. C., & Marshak, M. L. (2009). Dark Matter Constraints from a Cosmic Refractive Index. Doi:10.1063/1.3293792

  • Hadi, M. (2019, September 3). A refractive index of a kink in curved space.

  • Imhof, C., Zengerle, R. Experimental verification of negative refraction in a double cross metamaterial. Appl. Phys. A 94, 45–49 (2009).

  • L. Wright. Errors in Tired Light Cosmology.∼wright/tiredlit.htm, Apr 2008.

  • Lavenda, B. (2017) The Optical Properties of Gravity. Journal of Modern Physics, 8, 803-838. doi: 10.4236/jmp.2017.85051.

  • Lopresto, J. C., Chapman, R. D., & Sturgis, E. A. Solar gravitational redshift. Solar Physics, vol. 66, June 1980, p. 245-249.

  • Ming-Hui Shao, Na Wang and Zhi-Fu Gao (December 7th 2018). Tired Light Denies the Big Bang. IntechOpen, DOI: 10.5772/intechopen.81233. Available from:

  • Muhan Choi, Jong-Ho Choe, Byungsoo Kang, Choon-Gi Choi. A flexible metamaterial with negative refractive index at visible wavelength. Current Applied Physics, Volume 13, Issue 8, 2013, Pages 1723-1727, ISSN 1567-1739,

  • ETRIE, R. M. Some Problems of Stellar Motions. Journal of the Royal Astronomical Society of Canada, v. 43, p. 1, 1949.

  • Petrov, N.I. Speed of structured light pulses in free space. Sci Rep 9, 18.332 (2019).

  • PINCHUK, Anatoliy O.; SCHATZ, George C. Metamaterials with gradient negative index of refraction. JOSA A, v. 24, n. 10, p. A39-A44, 2007.

  • Radosz, A., Augousti, AT & Siwek, A. On the nature of cosmological redshift and spectral shift in Schwarzschild-like and other spacetimes. Gen Relativ Gravit 45, 705–715 (2013).

  • ROGERS, Adam. Frequency-dependent effects of gravitational lensing within plasma. Monthly Notices of the Royal Astronomical Society, v. 451, n. 1, p. 17-25, 2015.

  • ROSENBERG, Leslie J.; VAN BIBBER, Karl A. Searches for invisible axions. Physics Reports, v. 325, n. 1, p. 1-39, 2000.

  • SALATI, Pierre. Cosmology and dark matter. In: Particle Physics: Ideas and Recent Developments. Springer, Dordrecht, 2000. p. 417-510.

  • Salucci, P. The distribution of dark matter in galaxies. Astron Astrophys Rev 27, 2 (2019).

  • arazin, X., Couchot, F., Djannati-Ataï, A. et al. Can the apparent expansion of the universe be attributed to an increasing vacuum refractive index? EUR. Phys. J. C 78, 444 (2018).

  • SOARES, Domingos SL. O efeito Hubble. 2009

  • SOARES, Domingos. De Schwarzschild a Newton. Rev. Bras. Ensino Fís. [online]. 2020, vol.42 [cited 2020-11-28], e20190262. Available from: <>. Epub Feb 07, 2020. ISSN 1806-9126.

  • TAO, Hu et al. Flexible terahertz metamaterials: Towards a terahertz metamaterial invisible cloak. In: 2008 IEEE International Electron Devices Meeting. IEEE, 2008. p. 1-4.

  • TOLOBA, Elisa et al. Dark matter in ultra-diffuse galaxies in the Virgo cluster from their globular cluster populations. The Astrophysical Journal Letters, v. 856, n. 2, p. L31, 2018.

  • Trinchera, A. (2021) Redshift Anomaly on the Solar Disk as Multiple Interactions between Photons and Electrons. Journal of High Energy Physics, Gravitation and Cosmology, 7, 1-51. doi: 10.4236 / jhepgc.2021.71001.

  • WANG, Ling Jun. An Alternative Cosmology to the Big Bang-Dispersive Extinction Theory of Red Shift. Applied Physics Research, v. 5, n. 2, p. 47, 2013.

  • Yang, W., Leng, J., Zhang, S. et al. Detecting Topological Defect Dark Matter Using Coherent Laser Ranging System. Sci Rep 6, 29519 (2016).

All versions This version
Views 5133
Downloads 3423
Data volume 15.2 MB10.3 MB
Unique views 4031
Unique downloads 2723


Cite as