Dataset Open Access

UOPNOA and UOS2 datasets for aerial crop classification

D. Pedrayes,Oscar

Datasets UOPNOA and UOS2.

Each dataset contains images and labels to train and test a semantic segmentation model for crop classification / land use with satellite or aircraft imagery. The region of intereset is the northern

  • UPNOA is made out of PNOA aircraft imagery and uses RGB images. (34.000 images)
  • UOS2 is made out of Sentinel-2 satellite imagery and uses 13 bands or channels per image. (2.000 images)

Ground truth masks were made from SIGPAC data from the northern part of the Iberian Peninsula plateau in Spain.

Originally trained with UNet and DeepLabv3+

 

Please cite the original paper, which can be found at:

https://doi.org/10.3390/rs13122292

BibTex:

@article{pedrayes2021evaluation,
  title={Evaluation of Semantic Segmentation Methods for Land Use with Spectral Imaging Using Sentinel-2 and PNOA Imagery},
  author={Pedrayes, Oscar D and Lema, Dar{\'\i}o G and Garc{\'\i}a, Daniel F and Usamentiaga, Rub{\'e}n and Alonso, {\'A}ngela},
  journal={Remote Sensing},
  volume={13},
  number={12},
  pages={2292},
  year={2021},
  publisher={Multidisciplinary Digital Publishing Institute}
}

 

 

Files (9.7 GB)
Name Size
UOPNOA.zip
md5:48347b257bacb193953e205450fbed18
3.8 GB Download
UOS2.zip
md5:dc202525d72b6f08eb7be09edcd4f547
5.9 GB Download
349
131
views
downloads
All versions This version
Views 349349
Downloads 131131
Data volume 644.2 GB644.2 GB
Unique views 307307
Unique downloads 8787

Share

Cite as