Published January 30, 2021 | Version v1
Dataset Open

DRIV100 (Diverse Roadscenes from Internet Videos 100)

  • 1. Osaka University
  • 2. Technische Universität Darmstadt
  • 3. The University of Tokyo

Description

DRIV100 is a dataset for benchmarking unsupervised domain adaptation techniques on in-the-wild road-scene videos. The dataset consists of pixel-level annotations for 100 videos selected from YouTube to cover diverse scenes/domains. We provide multiple manually labeled ground-truth frames for each video, enabling a thorough evaluation of video-level domain adaptation where each video independently serves as the target domain. 

Please refer to our paper for more details, and please cite it if you use the DRIV100 dataset in your academic research:

Haruya Sakashita, Christoph Flothow, Noriko Takemura, and Yusuke Sugano. "DRIV100: In-The-Wild Multi-Domain Dataset and Evaluation for Real-World Domain Adaptation of Semantic Segmentation." arXiv preprint arXiv:2102.00150 (2021). https://arxiv.org/abs/2102.00150

Files

json.zip

Files (6.5 MB)

Name Size Download all
md5:0a87356dc85b9497c5e2cf5dde216165
10.1 kB Download
md5:04b62efb244ec5034f621d5c6956bee6
6.5 MB Preview Download
md5:31ffc76e9bcd459126011b5631b3a725
8.0 kB Download
md5:52d2e3232521e0cc0f500279a9c86e25
12.6 kB Preview Download
md5:9694b76df4cfcf9f669ae1414c2d6fd1
2.9 kB Preview Download

Additional details

Related works

Is documented by
arXiv:2102.00150 (arXiv)