There is a newer version of this record available.

Software Open Access

Factiva parser and NLP pipeline for news articles related to COVID-19

Giovanni Spitale

The COVID-19 pandemic generated (and keeps generating) a huge corpus of news articles, easily retrievable in Factiva with very targeted queries. 

The aim of this software is to provide the means to analyze this material rapidly. 

Data are retrieved from Factiva and downloaded by hand(...) in RTF. The RTF files are then converted to TXT with unoconv in a unix environment.

 

Parser:

Takes as input files numerically ordered in a folder. This is not fundamental (in case of multiple retrieves from Factiva) because the parser orders the article by date using the date field contained in each of the articles. Nevertheless, it is important to reduce duplicates (because they increase the computational time needed for processing the corpus), so before adding new articles in the folder, be sure to retrieve them from a timepoint that does not overlap with the articles already retrieved.

In any case, in the last phase the dataframe is checked for duplicates, that are counted and removed, but still the articles are processed by the parser and this takes computational time.

The parser removes search summaries, segments the text, and cleans it using regex rules. The resulting text is exported in a complete dataframe as a CSV file; a subset containing only title and text is exported as TXT, ready to be fed to the NLP pipeline.

The parser is language agnostic; just change the path to the folder containing the documents to parse. Important: there is a regex rule mentioning languages ("header_leftover"). it lists EN, DE, FR and IT. In case you need to work with another language, remember to correct that rule.

 

NLP pipeline

The NLP pipeline imports the files generated by the parser (divided by month to put less load on the memory) and analyses them. It is not language agnostic: correct linguistic settings must be specified in "setting up", "NLP" and "additional rules".

First some additional rules for NER are defined. Some are general, some are language-specific, as specified in the relevant section.

The files are opened and preprocessed, then lemma frequency and NE frequency are calculated per each month and in the whole corpus. important: in case of empty months (so, when analyzing less than one year of data) remember to exclude them from the mean, otherwise the mean will be distorted by the empty months.

All the dataframes are exported as CSV files for further analysis or for data visualization.

This code is optimized for English, German, French and Italian. Nevertheless, being based on spaCy, which provides several other models ( https://spacy.io/models ) could easily be adapted to other languages.

 

The whole software is structured in Jupyter-lab notebooks, heavily commented for future reference.

Files (477.9 kB)
Name Size
de-NLP.ipynb
md5:7cc11885761417c2755c480afd8a2de2
112.7 kB Download
en-NLP.ipynb
md5:c2ad3c73f761563bd7416b8073b82272
112.7 kB Download
fr-NLP.ipynb
md5:33c09034e4fbaad4b790b37e59426b15
112.7 kB Download
it-NLP.ipynb
md5:0ae6b0d0f0fb950c04ee4b865f60720e
112.6 kB Download
Parser.ipynb
md5:7a5b4e371c3feab73ff7a5f110f8f276
27.1 kB Download
190
10
views
downloads
All versions This version
Views 19056
Downloads 105
Data volume 816.4 kB392.5 kB
Unique views 16648
Unique downloads 43

Share

Cite as