Conference paper Open Access

Towards an Optimal Management of the 5G Cloud-RAN Through a Spatio-Temporal Prediction of Users' Dynamics

Rago, Arcangela; Ventrella, Pasquale; Piro, Giuseppe; Boggia, Gennaro; Dini, Paolo

—In the emerging 5G architecture, the Cloud-Radio Access Network (Cloud-RAN) offers the possibility to dynamically configure virtual resources and network functionalities very close to end-users, while jointly considering bandwidth, computing, latency, and memory capabilities requested by heterogeneous applications, the channel quality experienced by end-users, mobility, and any kind of system constraints. By capitalizing on recent scientific results and standardization activities on 5G, this short paper presents a preliminary design of an ETSI-NFV compliant architecture willing to support the implementation of advanced protocols, algorithms, and methodologies for the optimal management of the 5G CloudRAN. Its components and functionalities have been sketched by harmoniously integrating Software-Defined Networking (SDN) facilities, Multi-access Edge Computing (MEC), and deep learning. Herein, spatio-temporal users’ dynamics are collected by SDN controllers and predicted by a high-level orchestrator through a Convolutional Long Short-Term Memory scheme. Then, the outcomes of the prediction process are adopted to dynamically configure the Cloud-RAN (i.e., by using any kind of customizable algorithm). Some of the capabilities of the proposed approach are preliminarily evaluated by considering the autonomous driving use case and real mobility traces. Moreover, the paper concludes by reporting an overview of future directions of this research activity.

Grant numbers : 5G-REFINE - Resource EfFIcient 5G NEtworks project (code: TEC2017-88373-R). @ 2020 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.
Files (2.5 MB)
Name Size
Towards an Optimal Management.pdf
md5:9aeaac91c7fee810ffe281c26ffc6919
2.5 MB Download
21
38
views
downloads
All versions This version
Views 2121
Downloads 3838
Data volume 94.1 MB94.1 MB
Unique views 1717
Unique downloads 3636

Share

Cite as