Dataset Open Access

Analysis of correlation-based biomolecular networks from different omics data by fitting stochastic block models

Baum, Katharina; Rajapakse, Jagath C.; Azuaje, Francisco

Baum_et_al_2019_Supplementary_Figures.pdf: Supplementary Figures S1-S4. Legends are included under each figure.

sbm-for-correlation-based-networks-master.zip: Archived source code of R and Python functions for the analyses and example workflow description at time of publication. Files are maintained at https://gitlab.com/biomodlih/sbm-for-correlation-based-networks and https://gitlab.com/kabaum/sbm-for-correlation-based-networks.

Files (3.1 MB)
Name Size
Baum_et_al_2019_Supplementary_Figures.pdf
md5:56cedb0407d428145c0bd50876d7eb4d
2.4 MB Download
SBM-for-correlation-based-networks-master.zip
md5:d7a0626eba8d0991e37abeda23f452a3
787.2 kB Download
  • Budczies J, Brockmoller SF, et al. (2013). Comparative metabolomics of estrogen receptor positive and estrogen receptor negative breast cancer: alterations in glutamine and beta-alanine metabolism. J Proteomics. 2013;94:279-88.

  • Langfelder P, Horvath S. WGCNA (2008): an R package for weighted correlation network analysis. BMC Bioinformatics, 9:559.

  • Peixoto TP (2014). The graph-tool python library. 10.6084/m9.figshare.1164194

5,243
3,452
views
downloads
All versions This version
Views 5,2434,379
Downloads 3,4523,177
Data volume 7.0 GB6.8 GB
Unique views 3,9803,560
Unique downloads 2,7192,576

Share

Cite as