Book Open Access

Microbial conversions of terpenoids

Parshikov, Igor A

The monograph describes examples of the application of microbial technology for obtaining of derivatives of terpenoids. Obtaining new derivatives of terpenoids, including artemisinin derivatives with increased antimalarial activity, is an important goal of research in microbial biotechnology and medicinal chemistry.

Files (3.0 MB)
Name Size
final_terpenes_15.pdf
md5:e3733735a2e047389b7d6c9c296798fa
3.0 MB Download
  • Abraham W-R., Arfmann H-A. Microbial hydroxylation of activated acyclic monoterpene hydrocarbons. Tetrahedron 1992;48:6681–8.
  • Akihisa T., Hamasaki Y., Tokuda H., Ukiya M, Kimura Y., Nishino H. Microbial transformation of isosteviol and inhibitory effects on Epstein-Barr virus activation of the transformation products. J Nat Prod 2004;67:407–410.
  • Anderson A.B., McCrindle R., Turnbull J.K. Microbiological transformations of 17-norkauran-16-one, ent-17-norkauran-16-one, and 17-norphyllocladan-16-one by Aspergillus niger. Can J Chem 1975;53:1181–1188.
  • Areche C., Loyola L.A., Borquez J., Rovirosa J., San-Martin A. Microbial transformation of the diterpene mulin-11,13-dien-20-oic acid by Mucor plumbeus. Magn Reson Chem 2008;46:765–8.
  • Areche C., Vaca I., Labbe P., Soto-Delgado J., Astudillo L., Silva M., Rovirosa J., San-Martin A. Biotransformation of stypotriol triacetate by Aspergillus niger. J Mol Struct 2011;998:167–170.
  • Arfmann H-A., Abraham W-R., Kieslich K. Microbial ω-hydroxylation of trans-nerolidol and structurally related sesquiterpenoids. Biocatalysis 1988;2:59–67.
  • Asakawa Y., Takahashi H., Toyota M. Biotransformation of germacrane-type sesquiterpenoids by Aspergillus niger. Phytochemistry 1991;30:3993–3997.
  • Asakawa Y., Takahashi H., Toyota M., Noma Y. Biotransformation of monoterpenoids, (−)- and (+)-menthols, terpinolene and carvotanacetone by Aspergillus species. Phytochemistry 1991;30:3981–3987.
  • Ata A., Betteridge J., Schaub E., Kozera D.J., Holloway P., Samerasekera R. Microbial reactions on 7α-hydroxyfrullanolide and evaluation of biotransformed products for antibacterial activity. Chem Biodivers 2009;6:1453–1462.
  • Atta-ur-Rahman, Choudhary M.I., Shaheen F., Rauf A., Farooq A. Microbial transformation of some bioactive natural products. Nat Prod Lett 1998;12:215–222.
  • Atta-ur-Rahman, Farooq A., Choudhary M.I. Microbial transformation of sclareolide. J Nat Prod 1997;60:1038–1040.
  • Avery M.A., Alvim-Gaston M., Rodrigues C.R., Barreiro E.J., Cohen F.E., Sabnis YA, et al. Structure-activity relationships of the antimalarial agent artemisinin. 6. The development of predictive in vitro potency models using CoMFA and HQSAR methodologies. J Med Chem 2002;45:292–303.
  • Bastos D.Z.L., Pimentel I.C., Jesus D.A., Oliveira B.H. Biotransformation of betulinic and betulonic acids by fungi. Phytochemistry 2007;68:834–9.
  • Batista R., Silva A.J., Oliveira A.B. Plant-derived antimalarial agents: new leads and efficient phytomedicines. Part II. Non-alkaloidal natural products. Molecules 2009;14:3037–72.
  • Beekman A.C., Wierenga P.K., Woerdenbag H.J., van Uden W., Pras N., Konings A.W.T., et al. Artemisinin-derived sesquiterpene lactones as potential antitumour compounds: cytotoxic action against bone marrow and tumour cells. Planta Med 1998;64:615–9.
  • Bero J., Frédérich M., Quetin-Leclercq J. Antimalarial compounds isolated from plants used in traditional medicine. J Pharm Pharmacol 2009;61:1401–33.
  • Bhattacharyya PK, Prema BR, Kulkarni BD, Pradhan SK. Microbiological transformation of terpenes: hydroxylation of α-pinene. Nature 1960;187:689–690.
  • Bhatti H.N., Khera R.A. Biotransformations of diterpenoids and triterpenoids: a review. J Asian Nat Prod Res 2014;16:70–104.
  • Bhatti H.N., Zubair M., Rasool N., Hassan Z., Ahmad V.U. Microbial transformation of sesquiterpenoids. Nat Prod Commun 2009;4:1155–1168.
  • Carvalho C.C.C.R., Fonseca M.M.R. Biotransformation of terpenes. Biotechnol Adv 2006;24:134–42.
  • Carvalho T.C., Polizeli A.M., Turatti I.C.C., Severiano M.E., Carvalho C.E., Ambrósio S.R., et al. Screening of filamentous fungi to identify biocatalysts for lupeol biotransformation. Molecules 2010;15:6140–51.
  • Chatterjee T. Biotransformation of geraniol by Rhodococcus sp. strain GR3. Biotechnol Appl Biochem 2004;39:303–6.
  • Chaturvedi D. Sesquiterpene lactones: structural diversity and their biological activities. In: Tiwari VK, Mishra BB, editors. Opportunity, challenge and scope of natural products in medicinal chemistry. Trivandrum: Research Signpost; 2011. p. 313–34.
  • Chaturvedi D., Goswami A., Saikia P.P., Barua N.C., Rao P.G. Artemisinin and its derivatives: a novel class of anti-malarial and anti-cancer agents. Chem Soc Rev 2010;39:435–54.
  • Chauhan S.S., Sharma M., Chauhan P.M.S. Trioxaquines: hybrid molecules for the treatment of malaria. Drug News Perspect 2010;23:632–46.
  • Chen A.R.M., Reese P.B. Biotransformation of terpenes from Stemodia maritima by Aspergillus niger ATCC 9142. Phytochemistry 2002;59:57–62.
  • Chen L-X., Qiu F., Qu G-X., Yao X-S. Microbial transformation of neoandrographolide by Aspergillus niger (AS 3.739). J Asian Nat Prod Res 2007;9:493–499.
  • Chen L-X., Zhang H., Zhao Q., Yin S-Y., Zhang Z., Li T-X., Qiu F. Microbial transformation of curcumol by Aspergillus niger. Nat Prod Commun 2013;8:149–152.
  • Chen X-J., Archelas A., Furstoss R. Microbiological transformations. 27. The first examples for preparative-scale enantioselective or diastereoselective epoxide hydrolyses using microorganisms. An unequivocal access to all four bisabolol stereoisomers. J Org Chem 1993;58:5528–5532.
  • Chen Y., Zhang L., Qin B., Zhang X., Jia X., Wang X., Jin D., You S. An insight into the curdione biotransformation pathway by Aspergillus niger. Nat Prod Res 2014;28:454–460.
  • Cho W., Nam J-W., Kang H-J., Windono T., Seo E-K., Lee K-T.. Zedoarondiol isolated from the rhizoma of Curcuma heyneana is involved in the inhibition of iNOS, COX-2 and pro-inflammatory cytokines via the downregulation of NF-κB pathway in LPS-stimulated murine macrophages. Int Immunopharmacol 2009;9:1049–1057.
  • Chou B-H, Yang L-M, Chang S-F, Hsu F-L, Lo C-H, Lin W-K, Wang L-H, Liu P-C, Lin S-J. Fungal transformation of isosteviol lactone and its biological evaluation for inhibiting the AP-1 transcription factor. Phytochemistry 2009;70:759–764.
  • Choudhary MI, Gondal HY, Abbaskhan A, Atta-ur-Rahman. Microbial transformations of gelomulide G: a member of the rare class of diterpene lactones. Chem Biodivers 2005;2:1401–1408.
  • Choudhary MI, Musharraf SG, Nawaz SA, Anjum S, Parvez M, Fun H-K, Atta-ur-Rahman. Microbial transformation of (−)-isolongifolol and butyrylcholinesterase inhibitory activity of transformed products. Bioorg Med Chem 2005;13:1939–1944.
  • Cimanga RK, Tona GL, Mesia GK, Kambu OK, Bakana DP, Kalenda PDT, et al. Bioassay-guided isolation of antimalarial triterpenoid acids from the leaves of Morinda lucida. Pharm Biol 2006;44:677–81.
  • Clark AM, Hufford CD. Microbial transformations of the sesquiterpene lactone costunolide. J Chem Soc Perkin Trans I 1979;3022–3028.
  • Clark RL. Effects of artemisinins on reticulocyte count and relationship to possible embryotoxicity in confirmed and unconfirmed malarial patients. Birth Defects Res Part A 2012;94:61–75.
  • Demyttenaere JCR, Adams A, Vanoverschelde J, De Kimpe N. Biotransformation of (S)-(+)-linalool by Aspergillus niger: an investigation of the culture conditions. J Agric Food Chem 2001;49:5895–5901.
  • Demyttenaere JCR, De Pooter HL. Biotransformation of citral and nerol by spores of Penicillium digitatum. Flavour Fragr J 1998;13:173–6.
  • Demyttenaere JCR, Herrera MdC, De Kimpe N. Biotransformation of geraniol, nerol and citral by sporulated surface cultures of Aspergillus niger and Penicillium sp. Phytochemistry 2000;55:363–373.
  • Demyttenaere JCR, Herrera MdC, De Kimpe N. Biotransformation of geraniol, nerol and citral by sporulated surface cultures of Aspergillus niger and Penicillium sp. Phytochemistry 2000;55:363–73.
  • Demyttenaere JCR, Vanoverschelde J, De Kimpe N. Biotransformation of (R)-(+)- and (S)-(−)-citronellol by Aspergillus sp. and Penicillium sp., and the use of solid-phase microextraction for screening. J Chromatogr A 2004;1027:137–146.
  • Dewick PM. The mevalonate and deoxyxylulose phosphate pathways: terpenoids and steroids. In: Medicinal natural products: a biosynthetic approach, second edition. Chichester: Wiley; 2001. p. 167–289.
  • Divyashree MS, George J, Agrawal R. Biotransformation of terpenic substrates by resting cells of Aspergillus niger and Pseudomonas putida isolates. J Food Sci Technol 2006;43:73–76.
  • Divyashree MS, George J, Agrawal R. Biotransformation of terpenic substrates by resting cells of Aspergillus niger and Pseudomonas putida isolates. J Food Sci Technol 2006;43:73–76.
  • Dondorp AM, Yeung S, White L, Nguon C, Day NPJ, Socheat D, et al. Artemisinin resistance: current status and scenarios for containment. Nature Rev Microbiol 2010;8:272–80.
  • Dovgilevich E. V., Modyanova L. V., Parshikov I.A., Terentyev P. B., Duduchava M. R. Microbial synthesis of N-oxide of 9 amino-1,2,3,4,5,6,7,8-octahydroacridine: All-Union Conference on Chemistry of N-containing heterocyclic compounds. Chernogolovka, Moscow region, Russia, 1991, part 1, P. 118.
  • Elmarakby SA, el-Feraly FS, Elsohly HN, Croom EM, Hufford CD. Microbial transformation studies on arteannuin B. J Nat Prod 1987;50:903–9.
  • Esmaeili A, Hashemi E. Biotransformation of myrcene by Pseudomonas aeruginosa. Chem Centr J 2011;5:26.
  • Esmaeili A, Moazami N, Rustaiyan A. Biotransformation of germacranolide from [Onopordum leptolepis] by Aspergillus niger. Pak J Pharm Sci 2012;25:155–159.
  • Esmaeili A, Tavassoli A. Microbial transformation of citral by Penicillium sp. Acta Biochim Pol 2010;57:265–8.
  • Fernández I, Robert A. Peroxide bond strength of antimalarial drugs containing an endoperoxide cycle. Relation with biological activity. Org Biomol Chem 2011;9:4098–107.
  • Fourneron JD, Archelas A, Furstoss R. Microbial transformations. 12. Regiospecific and asymmetric oxidation of the remote double bond of geraniol. J Org Chem 1989;54:4686–4689.
  • Fu S-B, Yang J-S, Cui J-L, Feng X, Sun D-A. Biotransformation of ursolic acid by an endophytic fungus from medicinal plant Huperzia serrata. Chem Pharm Bull 2011;59:1180–2.
  • Fujiwara M, Marumoto S, Yagi N, Miyazawa M. Biotransformation of turmerones by Aspergillus niger. J Nat Prod 2011;74:86–89
  • Furusawa M, Hashimoto T, Noma Y, Asakawa Y. Biotransformation of aristolane- and 2,3-secoaromadendrane-type sesquiterpenoids having a 1,1-dimethylcyclopropane ring by Chlorella fusca var. vacuolata, Mucor species, and Aspergillus niger. Chem Pharm Bull 2006;54:861–868.
  • Furusawa M, Hashimoto T, Noma Y, Asakawa Y. Biotransformation of citrus aromatics nootkatone and valencene by microorganisms. Chem Pharm Bull 2005;53:1423–1429.
  • Furusawa M, Hashimoto T, Noma Y, Asakawa Y. Isolation and structures of new cyclomyltaylane and ent-chamigrane-type sesquiterpenoids from the liverwort Reboulia hemisphaerica and their biotransformation by the fungus Aspergillus niger. Chem Pharm Bull 2006;54:996–1003.
  • García PA, Oliveira AB, Batista R. Occurrence, biological activities and synthesis of kaurane diterpenes and their glycosides. Molecules 2007;12:455–83.
  • García-Carnelli C, Rodríguez P, Heinzen H, Menéndez P. Influence of culture conditions on the biotransformation of (+)-limonene by Aspergillus niger. Z Naturforsch 2014;69c:61–67.
  • García-Granados A, Martínez A, Onorato ME, Arias JM. Microbial transformation of tetracyclic diterpenes: conversion of ent-kaurenones by Aspergillus niger. J Nat Prod 1986;49:126–132.
  • Gordi T, Lepist E-I. Artemisinin derivatives: toxic for laboratory animals, safe for humans? Toxicol Lett 2004;147:99–107.
  • Goswami A, Saikia PP, Barua NC, Bordoloi M, Yadav A, Bora TC, et al. Bio-transformation of artemisinin using soil microbe: direct C-acetoxylation of artemisinin at C-9 by Penicillium simpli[ci]ssimum. Bioorg Med Chem Lett 2010;20:359–61.
  • Guo N, Zhao Y, Fang W-S. Biotransformation of 3-oxo-oleanolic acid by Absidia glauca. Planta Med 2010;76:1904–7.
  • Hamzah J, Skinner-Adams TS, Davis TME. In vitro antimalarial activity of retinoids and the influence of selective retinoic acid receptor antagonists. Acta Tropica 2003;87:345–53.
  • Haridy MSA, Ahmed AA, Doe M. Microbiological transformation of two labdane diterpenes, the main constituents of Madia species, by two fungi. Phytochemistry 2006;67:1455–1459.
  • Harinasuta T, Suntharasamai P, Viravan C. Chloroquine-resistant falciparum malaria in Thailand. Lancet 1965;286:657–60.
  • Hashimoto T, Noma Y, Asakawa Y. Biotransformation of terpenoids from the crude drugs and animal origin by microorganisms. Heterocycles 2001;54:529–559.
  • Hashimoto T, Noma Y, Asakawa Y. Biotransformation of terpenoids from the crude drugs and animal origin by microorganisms. Heterocycles 2001;54:529–559.
  • Hashimoto T, Noma Y, Gotoh Y, Tanaka M, Takaoka S, Asakawa Y. Biotransformation of (−)-maalioxide by Aspergillus niger and Aspergillus cellulosae. Heterocycles 2004;62:655–666.
  • Hashimoto T, Noma Y, Kato S, Tanaka M, Takaoka S, Asakawa Y. Biotransformation of hinesol isolated from the crude drug Atractylodes lancea by Aspergillus niger and Aspergillus cellulosae. Chem Pharm Bull 1999;47:716–717
  • Hayashi K-I, Asano K-I, Tanaka M, Takaoka D, Nozaki H. Biotransformation of shiromodiol diacetate, myli-4(15)-en-9-one and myliol by Aspergillus niger. Phytochemistry 1998;48:461–466.
  • Hebda C, Szykula J, Orpiszewski J, Fischer P. Novel metabolite structures from biotransformation of a sesquiterpenoid ketone by selected fungal strains. Biol Chem Hoppe-Seyler 1991;372:337–344.
  • Hien TT, White NJ. Qinghaosu. Lancet 1993;341:603–8.
  • Huang M, Lu J-J, Huang M-Q, Bao J-L, Chen X-P, Wang Y-T. Terpenoids: natural products for cancer therapy. Expert Opinion Investig Drugs 2012;21:1801–1818.
  • Iida M, Wakuri S, Mineki S, Nishitani K, Yamakawa K. Microbial hydroxylation of 11,13-dehydrosantonin by Aspergillus niger. J Ferment Bioeng 1993;76:296–299.
  • Jang H-J, Yoon S-H, Ryu H-K, Kim J-H, Wang C-L, Kim J-Y, et al. Retinoid production using metabolically engineered Escherichia coli with a two-phase culture system. Microb Cell Fact 2011;10:59.
  • Kain KC. Chemotherapy and prevention of drug-resistant malaria. Wildern Environ Med 1995;6:307–24.
  • Kang L-P, Zhang J, Yu H-S, Huang H-Z, Wang Y-Z, Ma B-P. One new triterpenoid from biotransformation product of glycyrrhizic acid. J Asian Nat Prod Res 2008;10:463–466.
  • Kaur K, Jain M, Kaur T, Jain R. Antimalarials from nature. Bioorg Med Chem 2009;17:3229–56.
  • Khalifa SI, Baker JK, Jung M, McChesney JD, Hufford CD. Microbial and mammalian metabolism studies on the semisynthetic antimalarial, deoxoartemisinin. Pharm Res 1995;12:1493–8.
  • Khamsan S, Liawruangrath B, Liawruangrath S, Teerawutkulrag A, Pyne SG, Garson MJ. Antimalarial, anticancer, antimicrobial activities and chemical constituents of essential oil from the aerial parts of Cyperus kyllingia Endl. Rec Nat Prod 2011;5:324–7.
  • Khasaeva F.M., Zakharchuk L.M., Netrusov A.I., Parshikov I.A. Biodegradation of pyridine by Arthrobacter sp. Natural Science. In: Young Scientist USA. 2014. V.1, P.50-52.
  • Khor GK, Uzir MH. Saccharomyces cerevisiae: a potential stereospecific reduction tool for biotransformation of mono- and sesquiterpenoids. Yeast 2011;28:93–107.
  • Klassen W. Introduction: development of the sterile insect technique for African malaria vectors. Malaria J 2009;8(Suppl 2):11.
  • Klayman DL. Qinghaosu (artemisinin): an antimalarial drug from China. Science 1985;228:1049–55.
  • Krings U, Hardebusch B, Albert D, Berger RG, Maróstica M, Pastore GM. Odor-active alcohols from the fungal transformation of α-farnesene. J Agric Food Chem 2006;54:9079–9084.
  • Krings U, Lehnert N, Fraatz MA, Hardebusch B, Zorn H, Berger RG. Autoxidation versus biotransformation of α-pinene to flavors with Pleurotus sapidus: regioselective hydroperoxidation of α-pinene and stereoselective dehydrogenation of verbenol. J Agric Food Chem 2009;57:9944–50.
  • Lahlou EH, Noma Y, Hashimoto T, Asakawa Y. Microbial transfomation of dehydropinguisenol by Aspergillus sp. Phytochemistry 2000;54:455–460.
  • Lamare V, Archelas A, Faure R, Cesario M, Pascard C, Furstoss R. Microbial transformations. 14. Regioselective hydroxylation of (1R)-caryolanol by Aspergillus niger. A reexamination of the 13C NMR spectrum of caryolanol. Tetrahedron 1989;45:3761–3768.
  • Lamare V, Furstoss R. Bioconversion of sesquiterpenes. Tetrahedron 1990;46:4109–4132.
  • Lamm AS, Chen ARM, Reynolds WF, Reese PB. Fungal hydroxylation of (−)-santonin and its analogues. J Mol Catal B Enzym 2009;59:292–296.
  • Lee I-S, ElSohly HN, Croom EM, Hufford CD. Microbial metabolism studies of the antimalarial sesquiterpene artemisinin. J Nat Prod 1989;52:337–41.
  • Li Q-G, Peggins JO, Fleckenstein LL, Masonic K, Heiffer MH, Brewer TG. The pharmacokinetics and bioavailability of dihydroartemisin, arteether, artemether, artesunic acid and artelinic acid in rats. J Pharm Pharmacol 1998;50:173–82.
  • Liao F. Discovery of artemisinin (qinghaosu). Molecules 2009;14:5362–6.
  • Liu J-H, Chen Y-G, Yu B-Y, Chen Y-J. A novel ketone derivative of artemisinin biotransformed by Streptomyces griseus ATCC 13273. Bioorg Med Chem Lett 2006;16:1909–12.
  • Liu X, Chen R, Xie D, Mei M, Zou J, Chen X, Dai J. Microbial transformations of taxadienes and the multi-drug resistant tumor reversal activities of the metabolites. Tetrahedron 2012;68:9539–9549.
  • Loyola LA, Bórquez J, Morales G, San-Martín A, Darias J, Flores N, et al. Mulinane-type diterpenoids from Azorella compacta display antiplasmodial activity. Phytochemistry 2004;65:1931–5.
  • Luo XD, Shen CC. The chemistry, pharmacology, and clinical applications of qinghaosu (artemisinin) and its derivatives. Med Res Rev 1987;7:29–52.
  • Madyastha KM, Gururaja TL. Utility of microbes in organic synthesis: selective transformation of acyclic isoprenoids by Aspergillus niger. Indian J Chem 1993;32B:609–614.
  • Madyastha KM, Krishna Murthy NSR. Regiospecific hydroxylation of acyclic monoterpene alcohols by Aspergillus niger. Tetrahedron Lett 1988;29:579–580.
  • Madyastha KM, Krishna Murthy NSR. Regiospecific hydroxylation of acyclic monoterpene alcohols by Aspergillus niger. Tetrahedron Lett 1988;29:579–580.
  • Mannan A, Ahmed I, Arshad W, Asim MF, Qureshi RA, Hussain I, et al. Survey of artemisinin production by diverse Artemisia species in northern Pakistan. Malaria J 2010;9:310.
  • Marquina S, Parra JL, González M, Zamilpa A, Escalante J, Trejo-Hernández MR, Álvarez L. Hydroxylation of the diterpenes ent-kaur-16-en-19-oic and ent-beyer-15-en-19-oic acids by the fungus Aspergillus niger. Phytochemistry 2009;70:2017–2022.
  • Martin GDA, Durrant MC, Reese PB. A predictive cytochrome P450 monooxygenase functional model for generic hydroxylation by Rhizopus oryzae ATCC 11145. J Theor Comput Chem 2008;7:421–33.
  • Medeiros SF, Avery MA, Avery B, Leite SGF, Freitas ACC, Williamson JS. Biotransformation of 10-deoxoartemisinin to its 7β-hydroxy derivative by Mucor ramannianus. Biotechnol Lett 2002;24:937–41.
  • Medhi B, Patyar S, Rao RS, Byrav P, Prakash A. Pharmacokinetic and toxicological profile of artemisinin compounds: an update. Pharmacology 2009;84:323–32.
  • Menéndez P, García C, Rodríguez P, Moyna P, Heinzen H. Enzymatic systems involved in D-limonene biooxidation. Braz Arch Biol Technol 2002;45:111–114.
  • Meunier B, Robert A. Heme as trigger and target for trioxane-containing antimalarial drugs. Accounts Chem Res 2010;43:1444–51.
  • Miyazawa M, Nobata M, Hyakumachi M, Kameoka H. Biotransformation of (+)- and (−)-camphorquinones by fungi. Phytochemistry 1995a;39:569–573.
  • Miyazawa M, Tsuruno K, Kameoka H. Asymmetric reduction of karahanaenone with various microorganisms. Tetrahedron Asymmetry 1995b;6:2121–2122.
  • Miyazawa M, Yokote K, Kameoka H. Biotransformation of the monoterpenoid, rose oxide, by Aspergillus niger. Phytochemistry 1995;39:85–89.
  • Modyanova L.V., Duduchava M.R., Piskunkova N.F., Grishina G.V., Terent'ev P.B., Parshikov I.A. Microbiological Transformation of Piperidine and Pyridine Derivatives. Cheminform. 2010. V.31, N 12. http://dx.doi.org/10.1002/chin.200012047
  • Modyanova L.V., Duduchava M.R., Piskunkova N.F., Grishina G.V., Terentyev P.B., Parshikov I.A. Microbial transformations of piperideine and pyridine derivatives. //Chemistry of Heterocyclic Compounds, 1999, 35, N5, P. 580-586; Chemical Abstracts, v. 132, 166096.
  • Moura IC, Wunderlich G, Uhrig ML, Couto AS, Peres VJ, Katzin AM, et al. Limonene arests parasite development and inhibits isoprenylation of proteins in Plasmodium falciparum. Antimicrob Agents Chemother 2001;45:2553–8.
  • Muraleedharan KM, Avery MA. Progress in the development of peroxide-based anti-parasitic agents. Drug Discov Today 2009;14:793–803.
  • Muraleedharan, K. M.; Parshikov, I. A.; Bandyopadhyaya, A. K.; Desai, P. V.; Tekwani, B. L.; Avery, M. A. Artemisinin-based antimalarial drugs: Search for new derivatives with improved bioavailability and novel biological activities. Abstracts of Papers, 225th ACS National Meeting, New Orleans, LA, United States, March 23-27, 2003.
  • Musharraf SG, Najeeb A, Khan S, Pervez M, Ali RA, Choudhary MI. Microbial transformation of 5α-hydroxycaryophylla-4(12),8(13)-diene with Macrophomina phaseolina. J Mol Catal B Enzym 2010;66:156–60.
  • Nakase I, Lai H, Singh NP, Sasaki T. Anticancer properties of artemisinin derivatives and their targeted delivery by transferrin conjugation. Int J Pharmaceutics 2008;354:28–33.
  • Newman AA, editor. Chemistry of terpenes and terpenoids. London: Academic Press; 1972.
  • Ning L, Qu G, Ye M, Guo H, Bi K, Guo D. Cytotoxic biotransformed products from triptonide by Aspergillus niger. Planta Med 2003;69:804–808.
  • Nishimura H, Noma Y. Microbial transformation of monoterpenes: flavor and biological activity. In: Takeoka GR, Teranishi R, Williams PJ, Kobayashi A, editors. Biotechnology for improved foods and flavors. ACS Symp Ser 1996;637:173–187.
  • Noedl H, Se Y, Schaecher K, Smith BL, Socheat D, Fukuda MM. Evidence of artemisinin-resistant malaria in western Cambodia. N Engl J Med 2008;359:2619–20.
  • Nogueira CR, Lopes LMX. Antiplasmodial natural products. Molecules 2011;16:2146–90.
  • Noma Y, Asakawa Y. Aspergillus spp.: biotransformation of terpenoids and related compounds. In: Bajaj WPS, editor. Biotechnology in agriculture and forestry, vol. 33, medicinal and aromatic plants VIII. Berlin: Springer-Verlag; 1995. p.62–96.
  • Noma Y, Nonomura S. Conversion of (−)-carvone and (+)-carvone by a strain of Aspergillus niger. Agric Biol Chem 1974;38:741–744.
  • O'Brien C, Henrich PP, Passi N, Fidock DA. Recent clinical and molecular insights into emerging artemisinin resistance in Plasmodium falciparum. Curr Opin Infect Dis 2011;24:570–7.
  • Oliveira BH de, Santos MC dos, Leal PC. Biotransformation of the diterpenoid, isosteviol, by Aspergillus niger, Penicillium chrysogenum and Rhizopus arrhizus. Phytochemistry 1999;51:737–741.
  • Oliveira BH, Strapasson RA. Biotransformation of the monoterpene, limonene, by Fusarium verticill[i]oides. Braz Arch Biol Technol 2000;43:11–4.
  • Omari AA, Gamble C, Garner P. Artemether-lumefantrine for uncomplicated malaria: a systematic review. Trop Med Int Health 2004;9:192–9.
  • Orabi K.Y., Galal AM, Ibrahim A-RS, El-Feraly FS, Khalifa SI, El-Sohly HN. Microbial metabolism of artemisitene. Phytochemistry 1999;51:257–61.
  • Pandey A, Soccol CR, Mitchell D. New developments in solid state fermentation: I-Bioprocesses and products. Process Biochem 2000;35:1153–69.
  • Parshikov I.A. Methods of biotechnology in the synthesis of drugs. (Russ) - Ufa: Infinity, 2012. – 108 P. (ISBN: 978-5-905695-04-9)
  • Parshikov I.A. Microbial conversions of nitrogenous heterocycles. M.: Editus, 2015. - 130 p.
  • Parshikov I.A. The transformation of nitrogen-containing heterocyclic compounds by some fungi. Thesis of Ph.D. M.: Moscow University. 1993. - 121 p.
  • Parshikov I.A., Freeman J. P., Lay J. O. Jr., Beger R. D., Williams A. J., Sutherland J. B. Microbiological transformation of enrofloxacin by the fungus Mucor ramannianus. Appl. Environ. Microbiol., 2000a, v. 66, No. 6. P. 2664 2667.
  • Parshikov I.A., Freeman J. P., Lay J. O. Jr., Beger R. D., Williams A. J., Sutherland J. B. Regioselective transformation of ciprofloxacin to N-acetylciprofloxacin by the fungus Mucor ramannianus. FEMS Microbiol. Lett., 1999b, v. 177, P. 131-135.
  • Parshikov I.A., Freeman J. P., Lay J. O. Jr., Beger R. D., Williams A. J., Sutherland J.B. Microbiological transformation of enrofloxacin by the fungus Mucor ramannianus. 100th General Meeting of American Society for Microbiology, Los Angeles, California, May 21-25, 2000d, Q-180.
  • Parshikov I.A., Freeman J. P., Lay J. O. Jr., Moody J. D., Williams A. J., Beger R. D., Sutherland J. B. Metabolism of the veterinary fluoroquinolone sarafloxacin by the fungus Mucor ramannianus. 100th General Meeting of American Society for Microbiology, Los Angeles, California, May 21–25, 2000b, Q-182.
  • Parshikov I.A., Freeman J. P., Lay J. O. Jr., Moody J. D., Williams A. J., Beger R. D., Sutherland J. B. Metabolism of the veterinary fluoroquinolone sarafloxacin by the fungus Mucor ramannianus. J. Ind. Microbiol. Biotechnol., 2001a, v. 26, P.140-144.
  • Parshikov I.A., Freeman J. P., Lay J. O. Jr., Moody J. D., Williams A. J., Sutherland J.B. Formation of unusual ciprofloxacin and norfloxacin conjugates by the fungus Trichoderma viride. 100th General Meeting of American Society for Microbiology, Los Angeles,California, May 21–25, 2000c, Q-181.
  • Parshikov I.A., Freeman J. P., Williams A. J., Moody J. D., Sutherland J. B. Biotransformation of N-acetylphenothiazine by fungi. Appl. Microbiol. Biotechnol., 1999a, v. 52, P. 553 557.
  • Parshikov I.A., Freeman J. P., Williams A. J., Moody J. D., Sutherland J. B. Microbiological transformation of N-acetylphenothiazine by fungi. 99th General Meeting of American Society for Microbiology, Chicago, Illinois, May 30 – June 3, 1999c, Q-258.
  • Parshikov I.A., Heinze T. M., Moody J. D., Freeman J. P., Williams A. J., Sutherland J. B. Regioselective formation of N-oxides from enrofloxacin and ofloxacin by the fungus Rhizoctonia sp. 101th General Meeting of American Society for Microbiology, Orlando, Florida, May 20-24, 2001d, Q-192.
  • Parshikov I.A., Heinze T. M., Moody J. D., Freeman J. P., Williams A. J., Sutherland J. B. The fungus Pestalotiopsis guepini as a model for biotransformation of ciprofloxacin and norfloxacin. Appl. Microbiol. Biotechnol., 2001b, v. 56, No.3/4, P. 474-477.
  • Parshikov I.A., Heinze T. M., Moody J. D., Freeman J. P., Williams A. J., Sutherland J. B. The fungus Pestalotiopsis guepini. as a model for biotransformation of ciprofloxacin and norfloxacin. 101th General Meeting of American Society for Microbiology, Orlando, Florida, May 20-24, 2001c, Q-191.
  • Parshikov I.A., Heinze T. M., Moody J. D., Williamson J. S. Microbial transformation of the Antimalarial drug Primaquine (8-Aminoquinoline) by Beauveria bassiana. 102th General Meeting of American Society for Microbiology, Salt Lake City, Utah, May 19-23, 2002d, Q-83.
  • Parshikov I.A., Heinze T. M., Williams A. J., Moody J. D., Freeman J. P., Sutherland J. B. Biotransformation of the antibacterial agent cinoxacin by the fungus Beauveria bassiana. 102th General Meeting of American Society for Microbiology, Salt Lake City, Utah, May 19-23, 2002c, Q-78.
  • Parshikov I.A., Heinze T. M., Williams A. J., Moody J. D., Freeman J. P., Sutherland J. B. Biotransformation of the antibacterial agent cinoxacin by the fungus Beauveria bassiana. FEMS Microbiol. Lett., 2002a, v.214, P.133-136.
  • Parshikov I.A., Miriyala B, Avery MA, Williamson JS. Hydroxylation of 10-deoxoartemisinin to 15-hydroxy-10-deoxoartemisinin by Aspergillus niger. Biotechnol Lett 2004d;26:607–10.
  • Parshikov I.A., Miriyala B, Muraleedharan KM, Avery MA, Williamson JS. Microbial transformation of artemisinin to 5-hydroxyartemisinin by Eurotium amstelodami and Aspergillus niger. J Ind Microbiol Biotechnol 2006a;33:349–52.
  • Parshikov I.A., Miriyala B., Avery M. A., Williamson J. S. Transformation of Artemisinin by Different Strains of Mucor ramannianus. 105th General Meeting of American Society for Microbiology, Atlanta, GA, June 5-9, 2005b, Q-198.
  • Parshikov I.A., Miriyala B., Avery M. A., Williamson J. S. Transformations of artemisinin to 5-hydroxyartemisinin. Abstracts of Papers, 229th ACS National Meeting, San Diego, CA, United States, March 13-17, 2005c, #381.
  • Parshikov I.A., Miriyala B., Hernandez-Luna C.E., Avery M. A., Williamson J. S. Regiocelective Transformation of Artemisinin by White-Rot Basidiomycetes. 106th General Meeting of American Society for Microbiology, Orlando, FL, May 21-25, 2006b, Q-293.
  • Parshikov I.A., Miriyala B., Muraleedharan KM, Illendula A, Avery MA, Williamson JS. Biocatalysis of the antimalarial artemisinin by Mucor ramannianus strains. Pharm Biol 2005a;43:579–82.
  • Parshikov I.A., Miriyala B., Muralieedharan K. M., Avery M. A., Williamson J. S. Fungal transformations of artemisinin. 104th General Meeting of American Society for Microbiology, New Orleans, LA, May 23-27, 2004b, Q-286.
  • Parshikov I.A., Modyanova L.V., Dovgilevich E.V., Terentyev P.B., Vorobyeva L.I., Grishina G.V. Microbial transformations of nitrogen heterocycles. III. Microbial synthesis of 1-benzoylpiperidine and 1-benzoylpyrrolidine hydroxy derivatives. Chemistry of Heterocyclic Compounds, 1992 , 28, N 2, P. 159-162; Chemical Abstracts 1993, v. 118, 6835c.
  • Parshikov I.A., Modyanova L.V., Dovgilevich E.V., Terentyev P.B., Vorobyeva L.I., Grishina G.V. Microbiological Transformations of Nitrogen-Containing Heterocyclic Compounds. Part 3. Microbiological Synthesis of Hydroxy Derivatives of 1-Benzoylpiperidine and 1-Benzoylpyrrolidine. Cheminform. 2010b, v.24, N 38, http://dx.doi.org/10.1002/chin.199338068
  • Parshikov I.A., Moody J. D., Freeman J. P., Lay J. O. Jr., Williams A. J., Heinze T. M., Sutherland J. B. Formation of conjugates from ciprofloxacin and norfloxacin in cultures of Trichoderma viride. Mycologia, 2002b, v.94, P.1-5.
  • Parshikov I.A., Muraleedharan KM, Avery MA, Williamson JS. Transformation of artemisinin by Cunninghamella elegans. Appl Microbiol Biotechnol 2004a;64:782–6.
  • Parshikov I.A., Muraleedharan KM, Miriyala B, Avery MA, Williamson JS. Hydroxylation of 10-deoxoartemisinin by Cunninghamella elegans. J Nat Prod 2004c;67:1595–7.
  • Parshikov I.A., Muralieedharan K. M., Avery M. A., Williamson J. S. Novel microbial transformations of artemisinin and 10-deoxoartemisinin. 103th General Meeting of American Society for Microbiology, Washington, D.C., Maryland, May 18-22, 2003, Q-129.
  • Parshikov I.A., Terent'ev P.B., Modyanova L.V. Microbiological Transformations of Nitrogen-Containing Heterocycles. Cheminform. 2010, v.26, N 30, http://dx.doi.org/10.1002/chin.199530292
  • Parshikov I.A., Terent'ev P.B., Modyanova L.V. Microbiological Transformations of Nitrogen-Containing Heterocycles. Cheminform. 2010d, v.26, N 30, http://dx.doi.org/10.1002/chin.199530292
  • Parshikov I.A., Terent'ev P.B., Piskunkova N.F., Gracheva R.A., Bulakhov G.A. Microbial Transformation of 4-Phenylpyrrolidone-2 Derivatives by Micellar Fungi. Cheminform. 2010e. V. 29. N 1. http://dx.doi.org/10.1002/chin.199801032
  • Parshikov I.A., Terentyev P.B., Modyanova L.V. Microbiological transformation in a series of nitrogen containing-heterocycles. (Review.) Chemistry of Heterocyclic Compounds, 1994, 30, N11-12, 1308-1330; Chemical Abstracts 1995, v.122, 290732s.
  • Parshikov I.A., Terentyev P.B., Modyanova L.V., Duduchava M.R., Dovgilevich E.V., Butakoff K.A. Microbial transformation of 9-amino-1,2,3,4,5,6,7,8-octahydroacridine. Chemistry of Heterocyclic Compounds, 1994, 30, N5, 627-628; Chemical Abstracts 1995, v. 122, 290697j.
  • Parshikov I.A., Terentyev P.B., Modyanova L.V., Duduchava M.R., Dovgilevich E.V., Butakoff K.A. Microbiological Transformation of 9-amino-1,2,3,4,5,6,7,8-octahydroacridine. Cheminform. 2010c, v.26, N 10, http://dx.doi.org/10.1002/chin.199510042
  • Parshikov I.A., Terentyev P.B., Modyanova L.V., Khofmann K., Khaufe G., Vogel M. Microbiological synthesis of 4-hydroxy-5-isopropyl-5-methoxy-2,5-dihydrofuran-2-one. Chemistry of Heterocyclic Compounds, 1994, 30, N5, 626; Chemical Abstracts 1995, v. 122, 290613d.
  • Parshikov I.A., Terentyev P.B., Modyanova L.V., Khofmann K., Khaufe G., Vogel M. Microbiological Synthesis of 4-Hydroxy-5-isopropyl-5-methoxy-2-oxo-2,5- dihydrofuran. Cheminform. 2010a, v.26, N 10, http://dx.doi.org/10.1002/chin.199510251
  • Parshikov I.A., Terentyev P.B., Piskunkova N.F., Gracheva G.A., Bulakhov G.A. Micobiological transformation of derivatives 4-phenyl-2-pyrrolidone by mycelial fungi. Chemistry of Heterocyclic Compounds, 1997, 33, N5, 523-526.
  • Parshikov I.A., Vorobyeva L.I., Modyanova L.V., Dovgilevich E.V., Terentyev P.B., Khofmann K. Strain of fungus Beauveria bassiana VKM F-3111D as a transformator for 1-benzoylpiperidine and 1-benzoylamino-3,7-dimethyloctadiene 2,6-hydroxylation, USSR Inventor's Certificate N 1 822 886, 1990b (Cl. C12P 17/12, C12N 1/14); Chemical Abstracts 1995, v. 122, 289065v.
  • Parshikov I.A., Vorobyeva L.I., Modyanova L.V., Dovgilevich E.V., Terentyev P.B., Khofmann K. Strain of fungus Cunninghamella verticillata VKPM F-430 as a transformator for 1-benzoylpyrrolidine and 1-benzoylamino-3,7-dimethyloctadiene 2,6-hydroxylation. USSR Inventor's Certificate N 1 789 557, 1990a (Cl. C12P 17/12, C12N 1/14).
  • Pertino M, Schmeda-Hirschmann G, Santos LS, Rodríguez JA, Theoduloz C. Biotransformation of jatrophone by Aspergillus niger ATCC 16404. Z Naturforsch 2007;62b:275–9.
  • Pertino M, Schmeda-Hirschmann G, Santos LS, Rodríguez JA, Theoduloz C. Biotransformation of jatrophone by Aspergillus niger. Z Naturforsch B 2007;62:275–279.
  • Posner GH, D'Angelo J, O'Neill PM, Mercer A. Anticancer activity of artemisinin-derived trioxanes. Expert Opin Ther Patents 2006;16:1665–72.
  • Prema BR, Bhattacharyya PK. 1962. Microbiological transformations of terpenes. III. Transformations of some mono- and sesqui-terpenes. Appl Microbiol 1962;10:529–531.
  • Price RN, Douglas NM, Anstey NM, von Seidlein L. Plasmodium vivax treatments: what are we looking for? Curr Opin Infect Dis 2011;24:578–85.
  • Ramirez HE, Cortes MM, Agosin E. Bioconversion of drimenol into 3β-hydroxydrimanes by Aspergillus niger. Effect of culture additives. J Nat Prod 1993;56:762–764.
  • Rocha D, Takahashi JA, Boaventura MAD. Di- and tri-hydroxylated kaurane derivatives from microbial transformation of ent-kaur-16-en-19-ol by Cephalosporium aphidicola and their allelopathic activity on Lactuca sativa (lettuce). Ecl Quím, São Paulo. 2009;34:57–62.
  • Rosazza JPN, Steffens JJ, Sariaslani FS, Goswami A, Beale JM, Reeg S, Chapman R. Microbial hydroxylation of 1,4-cineole. Appl Environ Microbiol 1987;53:2482–2486.
  • Rustaiyan A, Nahrevanian H, Kazemi M. Isolation of artediffusin (tehranolide) as a new antimalarial agent. Asian J Chem 2011;23:4810–4.
  • Schaneberg BT, Khan IA. Comparison of extraction methods for marker compounds in the essential oil of lemon grass by GC. J Agric Food Chem 2002;50:1345-9.
  • Schmeda-Hirschmann G, Aranda C, Kurina M, Rodríguez JA, Theoduloz C. Biotransformations of imbricatolic acid by Aspergillus niger and Rhizopus nigricans cultures. Molecules 2007;12:1092–100.
  • Schmeda-Hirschmann G, Aranda C, Kurina M, Rodríguez JA, Theoduloz C. Biotransformations of imbricatolic acid by Aspergillus niger and Rhizopus nigricans cultures. Molecules 2007;12:1092–1100.
  • Schmeda-Hirschmann G, Astudillo L, Palenzuela JA. Biotransformation of solidagenone by Alternaria alternata, Aspergillus niger and Curvularia lunata cultures. World J Microbiol Biotechnol 2004;20:93–97.
  • Severiano ME, Simao MR, Porto TS, Martins CHG, Veneziani RCS, Furtado NAJC, et al. Anticariogenic properties of ent-pimarane diterpenes obtained by microbial transformation. Molecules 2010;15:8553–66.
  • Severiano ME, Simão MR, Ramos HP, Parreira RLT, Arakawa NS, Said S, Furtado NAJC, Oliveira DCR de, Gregório LE, Tirapelli CR, Veneziani RCS, Ambrósio SR. Biotransformation of ent-pimaradienoic acid by cell cultures of Aspergillus niger. Bioorg Med Chem 2013;21:5870–5875.
  • Shen Y-C, Lo K-L, Lin C-L, Chakraborty R. Microbial transformation of baccatin VI and 1β-hydroxybaccatin I by Aspergillus niger. Bioorg Med Chem Lett 2003;13:4493–4496.
  • Silva E.O., Carvalho T.C., Parshikov I.A., Santos R.A., Emery F.S., Furtado N.A.J.C. Cytotoxicity of lapachol metabolites produced by probiotics. Lett. Appl. Microbiol. 2014. V.59. N 1. P. 108–114.
  • Simeó Y, Sinisterra JV. Biotransformation of terpenoids: a green alternative for producing molecules with pharmacological activity. Mini-Rev Org Chem 2009;6:128–34.
  • Snow RW, Guerra CA, Noor AM, Myint HY, Hay SI. The global distribution of clinical episodes of Plasmodium falciparum malaria. Nature 2005;434:214–7.
  • Srivastava S, Luqman S, Fatima A, Darokar MP, Negi AS, Kumar JK, et al. Biotransformation of artemisinin mediated through fungal strains for obtaining derivatives with novel activities. Sci Pharm 2009;77:87–95.
  • Suksamrarn S, Panseeta P, Kunchanawatta S, Distaporn T, Ruktasing S, Suksamrarn A. Ceanothane- and lupane-type triterpenes with antiplasmodial and antimycobacterial activities from Ziziphus cambodiana. Chem Pharm Bull 2006;54:535–7.
  • Sutherland J.B., Freeman J. P., Heinze T. M., Moody J. D., Williams A. J., Parshikov I.A., Zhang D. Oxidation of phenothiazine and phenoxazine by Cunninghamella elegans, Xenobiotica, 2001, v. 31, P.799-809.
  • Sutherland JB. Degradation of hydrocarbons by yeasts and filamentous fungi. In: Arora DK, editor. Fungal Biotechnology in Agricultural, Food, and Environmental Applications. New York: Marcel Dekker; 2004. p. 443–55.
  • Sá MS, Costa JFO, Krettli AU, Zalis MG, Maia GLA, Sette IMF, et al. Antimalarial activity of betulinic acid and derivatives in vitro against Plasmodium falciparum and in vivo in P. berghei-infected mice. Parasitol Res 2009;105:275-9.
  • Tabenkin B, LeMahieu RA, Berger J, Kierstead RW. Microbiological hydroxylation of cinerone to cinerolone. Appl Microbiol 1969;17:714–717.
  • Tatineni R, Doddapaneni KK, Dalavayi S, Kulkarni SM, Mangamoori LN. Microbacterium trichotecenolyticum enzyme mediated transformation of arteannuin B to artemisinin. Proc Biochem 2006;41:2464–7.
  • Tchoumbougnang F., Zollo P.H.A., Dagne E., Mekonnen Y. In vivo antimalarial activity of essential oils from Cymbopogon citratus and Ocimum gratissimum on mice infected with Plasmodium berghei. Planta Med 2005;71:20–3.
  • Terentyev P. B., Parshikov I.A., Dovgilevich E. V., Vorobyeva L. I., Modyanova L. V., Grishina G. V. Microbiological synthesis of isomeric hydroxy-1-benzoylpiperidines: Conference on "Chemistry of physiologically active compounds". Chernogolovka, Moscow region, Russia, November 13-15, 1989. P. 226.
  • Terentyev P.B., Parshikov I.A., Grishina G.V., Piskunkova N.F., Chumakov T.I., Bulakhov G.A. Hydroxylation of double bond in 1-benzyl-3-methylpiperideine by mycelial fungi. Chemistry of Heterocyclic Compounds, 1997, 33, N5,619-620.
  • Terentyev P.B., Parshikov I.A., Grishina G.V., Piskunkova N.F., Chumakov T.I., Bulakhov G.A. Hydroxylation of the Multiple Bond in 1-Benzyl-3-methyl-Δ3-piperideine by Micellar Fungi. Cheminform. 2010. V.29. N 1. http://dx.doi.org/10.1002/chin.199801033
  • Thongnest S., Mahidol C., Sutthivaiyakit S., Ruchirawat S. Oxygenated pimarane diterpenes from Kaempferia marginata. J Nat Prod 2005;68:1632–6.
  • Titanji V.P.K., Zofou D., Ngemenya M.N. The antimalarial potential of medicinal plants used for the treatment of malaria in Cameroonian folk medicine. Afr J Trad Compl Alt Med 2008;5:302–21.
  • Toniazzo G., Oliveira D., Dariva C., Oestreicher E.G., Antunes O.A.C. Biotransformation of (−)-β-pinene by Aspergillus niger ATCC 9642. Appl Biochem Biotechnol 2005;121:837–844.
  • Uenojo M., Pastore G.M. β-Carotene biotransformation to obtain aroma compounds. Ciênc Tecnol Aliment, Campinas 2010;30:822–7.
  • Velankar H.R., Heble M.R. Biotransformation of (L)-citronellal to (L)-citronellol by free and immobilized Rhodotorula minuta. Electron J Biotechnol 2003;6:90–103.
  • Venkateswarlu Y., Ramesh P., Reddy P.S., Jamil K. Microbial transformation of Δ9(15)-africanene. Phytochemistry 1999;52;1275–1277.
  • Vroman J.A., Alvim-Gaston M., Avery M.A. Current progress in the chemistry, medicinal chemistry and drug design of artemisinin based antimalarials. Curr Pharm Des 1999;5:101–38.
  • Walsh J.J., Coughlan D., Heneghan N., Gaynor C., Bell A. A novel artemisinin–quinine hybrid with potent antimalarial activity. Bioorg Med Chem Lett 2007;17:3599–602.
  • Wie H.J., Zhao H.L., Chang J.H., Kim Y.S., Hwang I.K, Ji G.E.. Enzymatic modification of saponins from Platycodon grandiflorus with Aspergillus niger. J Agric Food Chem 2007;55:8908–8913.
  • Williams A.J., Parshikov I.A., Moody J.D., Heinze T. M., Sutherland J. B. Fungal transformation of the antimicrobial agent during growth on poultry-litter materials. J. Appl. Poultry Res., 2004, v. 13, N 2, P. 235-240.
  • Williams A.J., Parshikov I.A., Moody J.D., Heinze T.M., Freeman J.P., Sutherland J.B. The metabolism of two antibacterial agents, norfloxacin and sarafloxacin by the saprobic fungus Trichoderma viride. during growth on the rise hulls. 101th General Meeting of American Society for Microbiology, Orlando, Florida, May 20-24, 2001, Q-195.
  • Wongsrichanalai C., Meshnick S.R. Declining artesunate-mefloquine efficacy against falciparum malaria on the Cambodia-Thailand border. Emerg Infect Dis 2008;14:716–9.
  • Yamazaki Y., Hayashi Y., Hori N., Mikami Y.. Microbial conversion of β-myrcene by Aspergillus niger. Agric Biol Chem 1988;52:2921–2922.
  • Yang L-M., Chang S-F., Lin W-K., Chou B-H., Wang L-H., Liu P-C., Lin S-J. Oxygenated compounds from the bioconversion of isostevic acid and their inhibition of TNF-α and COX-2 expressions in LPS-stimulated RAW 264.7 cells. Phytochemistry 2012;75:90–98.
  • Zhan J, Guo H, Dai J, Zhang Y, Guo D. Microbial transformations of artemisinin by Cunninghamella echinulata and Aspergillus niger. Tetrahedron Lett 2002a;43:4519–21.
  • Zhan J-X, Zhang Y-X, Guo H-Z, Han J, Ning L-L, Guo D-A. Microbial metabolism of artemisinin by Mucor polymorphosporus and Aspergillus niger. J Nat Prod 2002b;65:1693–5.
  • Zhang J, Cheng Z-H, Yu B-Y, Cordell GA, Qiu SX. Novel biotransformation of pentacyclic triterpenoid acids by Nocardia sp. NRRL 5646. Tetrahedron Lett 2005;46:2337–2340.
  • Zhang X-M, Archelas A, Furstoss R. Microbial transformations. 24. Synthesis of chiral building blocks via stereoselective dihydroxylation of citronellol enantiomers. Tetrahedron Asymmetry 1992;3:1373–1376.
8
2
views
downloads
All versions This version
Views 88
Downloads 22
Data volume 6.1 MB6.1 MB
Unique views 88
Unique downloads 22

Share

Cite as