Journal article Open Access
Schwarz, Dana;
Acharjya, Amitava;
Ichangi, Arun;
Kochergin, Yaroslav;
Lyu, Pengbo;
Opanasenko, Maksym V.;
Tarábek, Jan;
Vacek Chocholoušová, Jana;
Vacek, Jaroslav;
Schmidt, Johannes;
Nachtigall, Petr;
Thomas, Arne;
Bojdys, Michael J.
Crystalline and amorphous organic materials are an
emergent class of heterogeneous photocatalysts for the generation of
hydrogen from water, but a direct correlation between their structures
and the resulting properties has not been achieved so far. To make a
meaningful comparison between structurally different, yet chemically
similar porous polymers, we present two porous polymorphs of a
triazine-based graphdiyene (TzG) framework from a simple, one-pot
reaction using Cu(I) for TzGCu and Pd(II)/Cu(I) for TzGPd/Cu catalyzed
homocoupling polymerization. The polymers form via irreversible
coupling reactions and give rise to a crystalline (TzGCu) and an
amorphous (TzGPd/Cu) polymorph. Notably, the crystalline and
amorphous polymorphs are narrow-gap semiconductors with
permanent surface areas of 660 m2 g-1 and 392 m2 g-1, respectively.
Hence, both polymers are ideal heterogeneous photocatalysts for
water splitting with some of the highest hydrogen evolution rates
reported thus far up to 972 μmol h-1 g-1 with and 276 μmol h-1 g-1
without Pt co-catalyst. We conclude, that crystalline order improves
delocalisation, while the amorphous polymorph requires a co-catalyst
for efficient charge transfer; this will need to be considered in future
rational design of polymer catalysts and organic electronics.
Name | Size | |
---|---|---|
20180904_TzG_OA.pdf
md5:28e2c94b2fcc951114c3a091115b7978 |
1.0 MB | Download |
20180904_TzG_SI_OA.pdf
md5:539deb91f7a6ffcb2be4809eaae5c9e2 |
2.4 MB | Download |
Views | 271 |
Downloads | 412 |
Data volume | 528.2 MB |
Unique views | 255 |
Unique downloads | 346 |