Sub-micro- and nano-sized polyethylene terephthalate deconstruction with engineered protein nanopores
Creators
- Ana Robles-Martin1
- Rafael Amigot2
- Laura Fernandez-Lopez3
- Jose L. Gonzalez-Alfonso3
- Sergi Roda4
- Víctor Alcolea-Rodriguez5
- Diego Heras-Márquez6
- David Almendral5
- Cristina Coscolín5
- Francisco J. Plou5
- Raquel Portela5
- Miguel A. Bañares5
- Álvaro Martínez-del-Pozo6
- Sara García-Linares6
- Manuel Ferrer5
- Víctor Guallar7
- 1. Barcelona Supercomputing Center (BSC), 08034 Barcelona, Spain.
- 2. Departamento de Bioquímica y Biología Molecular, Facultades de Medicina, Biología y Ciencias Químicas, Universidad Complutense, 28040 Madrid, Spain.
- 3. Instituto de Catalisis y Petroleoquimica (ICP), CSIC, 28049 Madrid, Spain.
- 4. Barcelona Supercomputing Center (BSC), 08034 Barcelona, Spain
- 5. Instituto de Catalisis y Petroleoquimica (ICP), CSIC, 28049 Madrid, Spain
- 6. Departamento de Bioquímica y Biología Molecular, Facultades de Medicina, Biología y Ciencias Químicas, Universidad Complutense, 28040 Madrid, Spain
- 7. Barcelona Supercomputing Center (BSC), 08034 Barcelona, Spain; Institució Catalana de Recerca i Estudis Avançats (ICREA), 08010 Barcelona, Spain
Description
The authors declare that the main data supporting the findings of this study are available within the paper and related Supplementary Information, Supplementary Data and Source Data files. The molecular simulations, the Molecular Dynamics Simulations, and the quantum mechanical minimizations will be deposited at Zenodo (zenodo/Supplementary raw datasets_1.tar.gz). To use the archive, download the file, and extract its contents to a local directory using appropriate software. The directory will contain separate folders for each type of simulation, along with input and output files.
Abstract
The identification or design of biocatalysts to mitigate the accumulation of plastics, including sub-micro- and nano-sized polyethylene terephthalate (nPET), is becoming a global challenge. Here we computationally incorporated two hydrolytic active sites with geometries similar to that of Idionella sakaiensis PET hydrolase, to fragaceatoxin C (FraC), a membrane pore-forming protein. FraCm1/m2 could be assembled into octameric nanopores (7.0 nm high × 1.6–6.0 nm entry), which deconstructed (40 °C, pH 7.0) nPET from GoodFellow, commodities and plastic bottles. FraCm1 and FraCm2 degrade nPET by endo- and exo-type chain scission. While FraCm1 produces bis(2-hydroxyethyl) terephthalate as the main product, FraCm2 yields a high diversity of oligomers and terephthalic acid. Mechanistic and biochemical differences with benchmark PET hydrolases, along with pore and nPET dynamics, suggest that these pore-forming protein catalytic nanoreactors do not deconstruct macro-PET but are promising in nanotechnology for filtering, capturing and breaking down nPET, for example, in wastewater treatment plants.
Files
Files
(33.6 GB)
Name | Size | Download all |
---|---|---|
md5:f5d639c48b2128db15eb8e4077d7d5b5
|
1.7 GB | Download |
md5:a889c2718ec568c7df851ca281995b9e
|
12.3 GB | Download |
md5:80acada6088fe6dc3955746cb3feff3f
|
19.6 GB | Download |
md5:3815111b3920cd3373b12625df961e3f
|
7.4 MB | Download |