Published November 30, 2020 | Version v1
Journal article Restricted

Dihydro-furanones from Hyptis species: Chemical correlations and DFT-NMR/ECD calculations for stereochemical assignments

  • 1. * & Departamento de Farmacia, Facultad de Química and Programa de Maestría y Doctorado en Ciencias Químicas, Universidad Nacional Aut´onoma de M´exico, Ciudad

Description

Martínez-Fructuoso, Lucero, Pereda-Miranda, Rogelio, Fragoso-Serrano, Mabel, Silva, Aline Soares da, Leit˜ao, Suzana Guimar˜aes (2020): Dihydro-furanones from Hyptis species: Chemical correlations and DFT-NMR/ECD calculations for stereochemical assignments. Phytochemistry (112481) 179: 1-9, DOI: 10.1016/j.phytochem.2020.112481, URL: http://dx.doi.org/10.1016/j.phytochem.2020.112481

Files

Restricted

The record is publicly accessible, but files are restricted to users with access.

Linked records

Additional details

Identifiers

LSID
urn:lsid:plazi.org:pub:FFC3FFF9AB72C436FFAAAC00FF91DF1B

References

  • Boalino, D.M., Connolly, J.D., McLean, S., Reynolds, W.F., Tinto, W.F., 2003. α -Pyrones and a 2 (5H)-furanone from Hyptis pectinata. Phytochemistry. Persistent link using digital object identifier 64, 1303-1307. https://doi.org/10.1016/j. phytochem.2003.08.017.
  • Centko, R.M., Ram´on-Garcia, S., Taylor, T., Patrick, B.O., Thompson, C.J., Miao, V.P., Andersen, R.J., 2012. Ramariolides A-D, antimycobacterial butenolides isolated from the mushroom Ramaria cystidiophora. J. Nat. Prod 75, 2178-2182. https://doi. org/10.1021/np3006277.
  • Cheng, Z., Li, Y., Liu, W., Liu, L., Liu, J., Yuan, W., Luo, Z., Xu, W., Li, Q., 2019. Butenolide derivatives with α -glucosidase inhibitions from the deep-sea-derived fungus Aspergillus terreus YPGA10. Mar. Drugs 17, 332. https://doi.org/10.3390/ md17060332.
  • Eliel, E.L., Doyle, M.P., 2001. Basic Organic Stereochemistry. Wiley-Interscience, New York, pp. 432-433.
  • Figueroa-Gonz´alez, G., Jacobo-Herrera, N., Zentella-Dehesa, A., Pereda-Miranda, R., 2011. Reversal of multidrug resistance by morning glory resin glycosides in human breast cancer cells. J. Nat. Prod 75, 93-97. https://doi.org/10.1021/np200864m.
  • Fragoso-Serrano, M., Gibbons, S., Pereda-Miranda, R., 2005. Anti-staphylococcal and cytotoxic compounds from Hyptis pectinata. Planta Med. 71, 278-280. https://doi. org/10.1055/s-2005 837831.
  • Guo, F., Li, Z., Xu, X., Wang, K., Shao, M., Zhao, F., Wang, H., Hua, H., Pei, Y., Bai, J., 2016. Butenolide derivatives from the plant endophytic fungus Aspergillus terreus. Fitoterapia. Persistent link using digital object identifier 113, 44-50. https://doi. org/10.1016/j.fitote.2016.06.014.
  • Igarashi, Y., Ikeda, M., Miyanaga, S., Kasai, H., Shizuri, Y., Matsuura, N., 2015. Two butenolides with PPAR α agonistic activity from a marine-derived Streptomyces. J. Antibiot 68, 345-347. https://doi.org/10.1038/ja.2014.151.
  • Jeffrey, M., Knight, M., Evans, W.C., 1972. The bacterial degradation of flavonoids. Hydroxylation of the A-ring of taxifolin by a soil Pseudomonas. Biochem 130, 373-381. https://doi.org/10.1042/BJ1300373.
  • Ju´arez-Gonz´alez, F., Su´arez-Ortiz, G.A., Fragoso-Serrano, M., Cerda-Garcia-Rojas, C.M., Pereda-Miranda, R., 2015. DFT 1 H- 1 H coupling constants in the conformational analysis and stereoisomeric differentiation of 6-heptenyl-2H-pyran-2-ones: configurational reassignment of synargentolide A. Magn. Reson. Chem. 53, 203-212. https://doi.org/10.1002/mrc.4178.
  • Karuppiah, V., Sun, W., Li, Z., 2016. Natural products of actinobacteria derived from marine organisms. Stud. Nat. Prod. Chem. 48, 417-446. https://doi.org/10.1016/ B978-0-444-63602-7.00013-8.
  • Li, L.J., Li, T.X., Kong, L.Y., Yang, M.H., 2016. Antioxidant aromatic butenolides from an insect-associated Aspergillus iizukae Phytochem. Lett. Persistent link using digital object identifier 16, 134-140. https://doi.org/10.1016/j.phytol.2016.03.014.
  • L´opez-Vallejo, F., Fragoso-Serrano, M., Su´arez-Ortiz, G.A., Hern´andez-Rojas, A.C., Cerda-Garcia-Rojas, C.M., Pereda-Miranda, R., 2011. Vicinal 1 H-1 H NMR coupling constants from density functional theory as reliable tools for stereochemical analysis of highly flexible multichiral center molecules. J. Org. Chem. 76, 6057-6066. https://doi.org/10.1021/jo200637g.
  • Mansoor, T.A., Hong, J., Lee, C.O., Sim, C.J., Im, K.S., Lee, D.S., Jung, J.H., 2004. New cytotoxic metabolites from a marine sponge Homaxinella sp. J. Nat. Prod 67, 721-724. https://doi.org/10.1021/np030358j.
  • Martinez-Fructuoso, L., Pereda-Miranda, R., Rosas-Ramirez, D., Fragoso-Serrano, M., Cerda-Garcia-Rojas, C.M., da Silva, A.S., Leitao, G.G., Leitao, S.G., 2019. Structure elucidation, conformation, and configuration of cytotoxic 6-heptyl-5, 6-dihydro-2 Hpyran-2-ones from Hyptis species and their molecular docking to α -Tubulin. J. Nat. Prod 82, 520-531. https://doi.org/10.1021/acs.jnatprod.8b00908.
  • Milevskaya, V.V., Prasad, S., Temerdashev, Z.A., 2019. Extraction and chromatographic determination of phenolic compounds from medicinal herbs in the Lamiaceae and Hypericaceae families: a review. Microchem 145, 1036-1049. https://doi.org/ 10.1016/j.microc.2018.11.041.
  • Panche, A.N., Diwan, A.D., Chandra, S.R., 2016. Flavonoids: an overview. J. Nutr. Sci. 5, e47. https://doi.org/10.1017/jns.2016.41.
  • Pereda-Miranda, R., Hern´andez, L., Villavicencio, M.J., Novelo, M., Ibarra, P., Chai, H., Pezzuto, J.M., 1993. Structure and stereochemistry of pectinolides AC, novel antimicrobial and cytotoxic 5, 6-dihydro- α -pyrones from Hyptis pectinata. J. Nat. Prod 56, 583-593. https://doi.org/10.1021/np50094a019.
  • Piao, S.J., Zhang, H.J., Lu, H.Y., Yang, F., Jiao, W.H., Yi, Y.H., Chen, W.S., Lin, H.W., 2011. Hippolides A-H, acyclic manoalide derivatives from the marine sponge Hippospongia lachne. J. Nat. Prod 74, 1248-1254. https://doi.org/10.1021/ np200227s.
  • Pimentel-Elardo, S.M., Kozytska, S., Bugni, T.S., Ireland, C.M., Moll, H., Hentschel, U., 2010. Anti-parasitic compounds from Streptomyces sp. strains isolated from Mediterranean sponges. Mar. Drugs 8, 373-380. https://doi.org/10.1021/ np200227s.
  • Qi, C., Gao, W., Guan, D., Wang, J., Liu, M., Chen, C., Zhu, H., Zhou, Y., Lai, Y., Hu, Z., Zhou, Q., Zhang, Y., 2018. Butenolides from a marine-derived fungus Aspergillus terreus with antitumor activities against pancreatic ductal adenocarcinoma cells.
  • Su´arez-Ortiz, G.A., Cerda-Garcia-Rojas, C.M., Hernandez-Rojas, A., Pereda-Miranda, R., 2013. Absolute configuration and conformational analysis of brevipolides, bioactive 5, 6-dihydro- α -pyrones from Hyptis brevipes. J. Nat. Prod 76, 72-78. https://doi.org/ 10.1021/np300740h.
  • Su´arez-Ortiz, G.A., Cerda-Garcia-Rojas, C.M., Fragoso-Serrano, M., Pereda-Miranda, R., 2017. Complementarity of DFT calculations, NMR anisotropy, and ECD for the configurational analysis of brevipolides K-O from Hyptis brevipes. J. Nat. Prod 80, 181-189. https://doi.org/10.1021/acs.jnatprod.6b00953.
  • Sun, Y., Liu, J., Li, L., Gong, C., Wang, S., Yang, F., Hua, H., Lin, H., 2018. New butenolide derivatives from the marine sponge-derived fungus Aspergillus terreus.
  • Umesh, C.V., Jamsheer, A.M., Alex, P.M., 2018. The role of flavonoids in drug discoveryreview on potential applications. Res. J. Life Sci. Bioinform. Pharm. Chem. Sci. 4, 70-77. https://doi.org/10.26479/2018.0401.06.
  • Wang, S.H., Hu, Y.L., Liu, T.X., 2019. Plant distribution and pharmacological activity of flavonoids. Tradit. Med. Res. 4, 269-287. https://doi.org/10.12032/ TMR20190824131.
  • Xu, Y., He, H., Schulz, S., Xin, L., Nobushino, F., Hairong, X., Xiang, X., Pei-Yuan, Q., 2010. Potent antifouling compounds produced by marine Streptomyces. Bioresour. Technol. 101, 1331-1336. https://doi.org/10.1016/j.biortech.2009.09.046.
  • Yang, B., Tong, Q., Lin, S., Guo, J., Zhang, J., Liu, J., Wang, J., Zhu, H., Hu, Z., Zhang, Y., 2019. Cytotoxic butenolides and diphenyl ethers from the endophytic fungus Pestalotiopsis sp. Phytochem. Lett. 29, 186-189. https://doi.org/10.1016/j. phytol.2018.11.021.