Published November 30, 2020 | Version v1
Journal article Restricted

In silico characterization of class II plant defensins from Arabidopsis thaliana

  • 1. Centro de An´alises Proteˆomicas e Bioquímicas. Programa de P´os-Graduaç˜ao em Ciˆencias Genˆomicas e Biotecnologia, Universidade Cat´olica de Brasília, Brasília, DF, & Departamento de Biologia, Programa de P´os-Graduaç˜ao em Gen´etica e Biotecnologia, Universidade Federal de Juiz de Fora, Campus Universit´ario, Juiz de Fora, MG,
  • 2. Centro de An´alises Proteˆomicas e Bioquímicas. Programa de P´os-Graduaç˜ao em Ciˆencias Genˆomicas e Biotecnologia, Universidade Cat´olica de Brasília, Brasília, DF,

Description

Costa, Laura S.M., Allan, Pires, S., Damaceno, Neila B., Rigueiras, Pietra O., Maximiano, Mariana R., Franco, Octavio L., Porto, William F. (2020): In silico characterization of class II plant defensins from Arabidopsis thaliana. Phytochemistry (112511) 179: 1-8, DOI: 10.1016/j.phytochem.2020.112511, URL: http://dx.doi.org/10.1016/j.phytochem.2020.112511

Files

Restricted

The record is publicly accessible, but files are restricted to users with access.

Linked records

Additional details

Identifiers

LSID
urn:lsid:plazi.org:pub:B818FFD7FFCDFFD3280DFFD6FF980741
URL
http://publication.plazi.org/id/B818FFD7FFCDFFD3280DFFD6FF980741

References

  • Aharoni, A., Gaidukov, L., Khersonsky, O., Gould, S.M.Q., Roodveldt, C., Tawfik, D.S., 2005. The "evolvability" of promiscuous protein functions. Nat. Genet. 37, 73-76. https://doi.org/10.1038/ng1482.
  • Alvarez-Ponce, D., Ruiz-Gonzalez ´, M., Vera-Sirera, F., Feyertag, F., Perez-Amador, M., Fares, M., 2018. Arabidopsis heat stress-induced proteins are enriched in electrostatically charged amino acids and intrinsically disordered regions. Int. J. Mol. Sci. 19, 2276. https://doi.org/10.3390/ijms19082276.
  • Balandin, M., Royo, J., G´omez, E., Muniz, L.M., Molina, A., Hueros, G., 2005. A protective role for the embryo surrounding region of the maize endosperm, as evidenced by the characterisation of ZmESR-6, a defensin gene specifically expressed in this region. Plant Mol. Biol. 58, 269-282. https://doi.org/10.1007/s11103-005- 3479-1.
  • Berendsen, H.J.C., Postma, J.P.M., van Gunsteren, W.F., Hermans, J., 1981. Interaction models for water in relation to protein hydration. In: Pullman, B. (Ed.), Intermolecular Forces. Springer, pp. 331-338.
  • Cammue, B.P., De Bolle, M.F., Terras, F.R., Proost, P., Van Damme, J., Rees, S.B., Vanderleyden, J., Broekaert, W.F., 1992. Isolation and characterization of a novel class of plant antimicrobial peptides form Mirabilis jalapa L. seeds. J. Biol. Chem. 267, 2228-2233.
  • Darden, T., York, D., Pedersen, L., 1993. Particle mesh Ewald: an N⋅log(N) method for Ewald sums in large systems. J. Chem. Phys. 98, 10089. https://doi.org/10.1063/ 1.464397.
  • De-Paula, V.S., Razzera, G., Medeiros, L., Miyamoto, C.A., Almeida, M.S., Kurtenbach, E., Almeida, F.C.L., Valente, A.P., 2008. Evolutionary relationship between defensins in the Poaceae family strengthened by the characterization of new sugarcane defensins. Plant Mol. Biol. 68, 321-335. https://doi.org/10.1007/s11103-008-9372-y.
  • de Paula, V.S., Razzera, G., Barreto-Bergter, E., Almeida, F.C.L., Valente, A.P., 2011. Portrayal of complex dynamic properties of sugarcane defensin 5 by NMR: multiple motions associated with membrane interaction. Structure 19, 26-36. https://doi. org/10.1016/J.STR.2010.11.011.
  • Doucet, J., Lee, H.K., Udugama, N., Xu, J., Qi, B., Goring, D.R., 2019. Investigations into a putative role for the novel BRASSIKIN pseudokinases in compatible pollen-stigma interactions in Arabidopsis thaliana. BMC Plant Biol. 19, 549. https://doi.org/ 10.1186/s12870-019-2160-9.
  • Flagel, L.E., Wendel, J.F., 2009. Gene duplication and evolutionary novelty in plants. New Phytol. 183, 557-564. https://doi.org/10.1111/j.1469-8137.2009.02923.x.
  • Flores, A.C., Via, V.D., Savy, V., Villagra, U.M., Zanetti, M.E., Blanco, F., 2018. Comparative phylogenetic and expression analysis of small GTPases families in legume and non-legume plants. Plant Signal. Behav. 13, e1432956 https://doi.org/ 10.1080/15592324.2018.1432956.
  • Franco, O.L., 2011. Peptide promiscuity: an evolutionary concept for plant defense. FEBS Lett. 585, 995-1000. https://doi.org/10.1016/j.febslet.2011.03.008.
  • Hess, B., Bekker, H., Berendsen, H.J.C., Fraaije, J.G.E.M., 1997. LINCS: a linear constraint solver for molecular simulations. J. Comput. Chem. 18, 1463-1472. https://doi.org/10.1002/(SICI)1096-987X(199709)18:12<1463::AID-JCC4>3.0.
  • Hess, B., Kutzner, C., van der Spoel, D., Lindahl, E., 2008. Gromacs 4: algorithms for highly efficient, load-balanced, and scalable molecular simulation. J. Chem. Theor. Comput. 4, 435-447. https://doi.org/10.1021/ct700301q.
  • Hooper, C.M., Castleden, I.R., Tanz, S.K., Aryamanesh, N., Millar, A.H., 2017. SUBA4: the interactive data analysis centre for Arabidopsis subcellular protein locations. Nucleic Acids Res. 45, D1064-D1074. https://doi.org/10.1093/nar/gkw1041.
  • Hurles, M., 2004. Gene duplication: the genomic trade in spare parts. PLoS Biol. 2, e206 https://doi.org/10.1371/journal.pbio.0020206.
  • K¨all, L., Krogh, A., Sonnhammer, E.L.L., 2007. Advantages of combined transmembrane topology and signal peptide prediction-the Phobius web server. Nucleic Acids Res. 35, W429-W432. https://doi.org/10.1093/nar/gkm256.
  • Klepikova, A.V., Kasianov, A.S., Gerasimov, E.S., Logacheva, M.D., Penin, A.A., 2016. A high resolution map of the Arabidopsis thaliana developmental transcriptome based on RNA-seq profiling. Plant J. 88, 1058-1070. https://doi.org/10.1111/ tpj.13312.
  • Lacerda, A.F., Vasconcelos, A t.A.R., Pelegrini, P.B., Grossi de Sa, M.F., 2014. Antifungal defensins and their role in plant defense. Front. Microbiol. 5, 116. https://doi.org/ 10.3389/fmicb.2014.00116.
  • Landon, C., Sodano, P., Hetru, C., Hoffmann, J., Ptak, M., 1997. Solution structure of drosomycin, the first inducible antifungal protein from insects. Protein Sci. 6, 1878-1884. https://doi.org/10.1002/pro.5560060908.
  • Laskowski, R.A., MacArthur, M.W., Moss, D.S., Thornton, J.M., 1993. PROCHECK: a program to check the stereochemical quality of protein structures. J. Appl. Crystallogr. 26, 283-291. https://doi.org/10.1107/S0021889892009944.
  • Lay, F.T., Anderson, M.A., 2005. Defensins-components of the innate immune system in plants. Curr. Protein Pept. Sci. 6, 85-101.
  • Lay, F.T., Brugliera, F., Anderson, M.A., 2003. Isolation and properties of floral defensins from ornamental tobacco and petunia. Plant Physiol. 131, 1283-1293. https://doi. org/10.1104/pp.102.016626.
  • Lay, F.T., Poon, S., McKenna, J.A., Connelly, A.A., Barbeta, B.L., McGinness, B.S., Fox, J. L., Daly, N.L., Craik, D.J., Heath, R.L., Anderson, M.A., 2014. The C-terminal propeptide of a plant defensin confers cytoprotective and subcellular targeting functions. BMC Plant Biol. 14, 41. https://doi.org/10.1186/1471-2229-14-41.
  • Liu, X., Zhang, H., Jiao, H., Li, L., Qiao, X., Fabrice, M.R., Wu, J., Zhang, S., 2017. Expansion and evolutionary patterns of cysteine-rich peptides in plants. BMC Genom. 18, 610. https://doi.org/10.1186/s12864-017-3948-3.
  • Luo, J.-S., Gu, T., Yang, Y., Zhang, Z., 2019. A non-secreted plant defensin AtPDF2.6 conferred cadmium tolerance via its chelation in Arabidopsis. Plant Mol. Biol. 100, 561-569. https://doi.org/10.1007/s11103-019-00878-y.
  • Melo, F.R., Rigden, D.J., Franco, O.L., Mello, L.V., Ary, M.B., Grossi de S´a, M.F., Bloch, C., 2002. Inhibition of trypsin by cowpea thionin: characterization, molecular modeling, and docking. Proteins Struct. Funct. Bioinforma. 48, 311-319. https://doi. org/10.1002/prot.10142.
  • Micol-Ponce, R., Sarmiento-Manus t, R., Ruiz-Bay´on, A., Montaci´e, C., S´aez-Vasquez, J., Ponce, M.R., 2018. Arabidopsis RIBOSOMAL RNA PROCESSING7 is required for 18S rRNA maturation. Plant Cell 30, 2855-2872. https://doi.org/10.1105/tpc.18.00245.
  • Miyamoto, S., Kollman, P.A., 1992. Settle: an analytical version of the SHAKE and RATTLE algorithm for rigid water models. J. Comput. Chem. 13, 952-962. https:// doi.org/10.1002/jcc.540130805.
  • Mondrag´on-Palomino, M., Stam, R., John-Arputharaj, A., Dresselhaus, T., 2017. Diversification of defensins and NLRs in Arabidopsis species by different evolutionary mechanisms. BMC Evol. Biol. 17, 255. https://doi.org/10.1186/ s12862-017-1099-4.
  • Nobeli, I., Favia, A.D., Thornton, J.M., 2009. Protein promiscuity and its implications for biotechnology. Nat. Biotechnol. 27, 157-167. https://doi.org/10.1038/nbt1519.
  • Omidvar, R., Xia, Y., Porcelli, F., Bohlmann, H., Veglia, G., 2016. NMR structure and conformational dynamics of AtPDFL2.1, a defensin-like peptide from Arabidopsis thaliana. Biochim. Biophys. Acta Protein Proteonomics 1864, 1739-1747. https:// doi.org/10.1016/j.bbapap.2016.08.017.
  • Parisi, K., Shafee, T.M.A., Quimbar, P., van der Weerden, N.L., Bleackley, M.R., Anderson, M.A., 2019. The evolution, function and mechanisms of action for plant defensins. Semin. Cell Dev. Biol. 88, 107-118. https://doi.org/10.1016/j. semcdb.2018.02.004.
  • Pelegrini, P.B., Lay, F.T., Murad, A.M., Anderson, M.A., Franco, O.L., 2008. Novel insights on the mechanism of action of alpha-amylase inhibitors from the plant defensin family. Proteins 73, 719-729. https://doi.org/10.1002/prot.22086.
  • Petersen, T.N., Brunak, S., von Heijne, G., Nielsen, H., 2011. SignalP 4.0: discriminating signal peptides from transmembrane regions. Nat. Methods 8, 785-786. https://doi. org/10.1038/nmeth.1701.
  • Pires, A ´.S., Rigueiras, P.O., Dohms, S.M., Porto, W.F., Franco, O.L., 2019. Structureguided identification of antimicrobial peptides in the spathe transcriptome of the non-model plant, arum lily ( Zantedeschia aethiopica ). Chem. Biol. Drug Des. https:// doi.org/10.1111/cbdd.13498.
  • Porto, W.F., Fensterseifer, G.M., Franco, O.L., 2014. In silico identification, structural characterization, and phylogenetic analysis of MdesDEF-2: a novel defensin from the Hessian fly, Mayetiola destructor. J. Mol. Model. 20, 2339. https://doi.org/10.1007/ s00894-014-2339-9.
  • Porto, W.F., Miranda, V.J., Pinto, M.F.S., Dohms, S.M., Franco, O.L., 2016. Highperformance computational analysis and peptide screening from databases of cyclotides from poaceae. Biopolymers 106, 109-118. https://doi.org/10.1002/ bip.22771.
  • Porto, W.F., Pires, A.S., Franco, O.L., 2017. Computational tools for exploring sequence databases as a resource for antimicrobial peptides. Biotechnol. Adv. 35 https://doi. org/10.1016/j.biotechadv.2017.02.001.
  • Porto, W.F., Pires, A ´.S., Franco, O.L., 2012a. CS-AMPPred: an updated SVM model for antimicrobial activity prediction in cysteine-stabilized peptides. PloS One 7, e51444. https://doi.org/10.1371/journal.pone.0051444.
  • Porto, W.F., Souza, V.A., Nolasco, D.O., Franco, O.L., 2012b. In silico identification of novel hevein-like peptide precursors. Peptides 38, 127-136. https://doi.org/ 10.1016/j.peptides.2012.07.025.
  • Sagaram, U.S., El-Mounadi, K., Buchko, G.W., Berg, H.R., Kaur, J., Pandurangi, R.S., Smith, T.J., Shah, D.M., 2013. Structural and functional studies of a phosphatidic acid-binding antifungal plant defensin MtDef4: identification of an RGFRRR motif governing fungal cell entry. PloS One 8, e82485. https://doi.org/10.1371/journal. pone.0082485.
  • Shafee, T., Anderson, M.A., 2019. A quantitative map of protein sequence space for the cis-defensin superfamily. Bioinformatics 35, 743-752. https://doi.org/10.1093/ bioinformatics/bty697.
  • Shafee, T.M.A., Lay, F.T., Hulett, M.D., Anderson, M.A., 2016. The defensins consist of two independent, convergent protein superfamilies. Mol. Biol. Evol. 33, 2345-2356. https://doi.org/10.1093/molbev/msw106.
  • Shafee, T.M.A., Lay, F.T., Phan, T.K., Anderson, M.A., Hulett, M.D., 2017. Convergent evolution of defensin sequence, structure and function. Cell. Mol. Life Sci. 74, 663-682. https://doi.org/10.1007/s00018-016-2344-5.
  • Silverstein, K.A.T., Graham, M.A., Paape, T.D., VandenBosch, K.A., 2005. Genome organization of more than 300 defensin-like genes in Arabidopsis. Plant Physiol. 138, 600-610. https://doi.org/10.1104/pp.105.060079.
  • Silverstein, K.A.T., Moskal, W.A., Wu, H.C., Underwood, B.A., Graham, M.A., Town, C. D., VandenBosch, K.A., 2007. Small cysteine-rich peptides resembling antimicrobial peptides have been under-predicted in plants. Plant J. 51, 262-280. https://doi.org/ 10.1111/j.1365-313X.2007.03136.x.
  • Sugrue, I., O' Connor, P.M., Hill, C., Stanton, C., Ross, R.P., 2019. Actinomyces produces defensin-like bacteriocins (actifensins) with a highly degenerate structure and broad antimicrobial activity. J. Bacteriol. 202 https://doi.org/10.1128/JB.00529-19.
  • Takeuchi, H., Higashiyama, T., 2012. A species-specific cluster of defensin-like genes encodes diffusible pollen tube Attractants in Arabidopsis. PLoS Biol. 10, e1001449 https://doi.org/10.1371/journal.pbio.1001449.
  • Thomas, J.H., 1993. Thinking about genetic redundancy. Trends Genet. 9, 395-399. https://doi.org/10.1016/0168-9525(93)90140-D.
  • van der Weerden, N.L., Anderson, M.A., 2013. Plant defensins: common fold, multiple functions. Fungal Biol. Rev. 26, 121-131. https://doi.org/10.1016/J. FBR.2012.08.004.
  • Vanommeslaeghe, K., Hatcher, E., Acharya, C., Kundu, S., Zhong, S., Shim, J., Darian, E., Guvench, O., Lopes, P., Vorobyov, I., Mackerell, A.D., 2009. CHARMM general force field: a force field for drug-like molecules compatible with the CHARMM all-atom additive biological force fields. J. Comput. Chem. 31 (NA-NA) https://doi.org/ 10.1002/jcc.21367.
  • Waghu, F.H., Gopi, L., Barai, R.S., Ramteke, P., Nizami, B., Idicula-Thomas, S., 2014. CAMP: collection of sequences and structures of antimicrobial peptides. Nucleic Acids Res. 42, D1154-D1158. https://doi.org/10.1093/nar/gkt1157.
  • Webb, B., Sali, A., 2014. Comparative protein structure modeling using MODELLER. Curr. Protoc. Bioinformatics 47. https://doi.org/10.1002/0471250953.bi0506s47.
  • Wiederstein, M., Sippl, M.J., 2007. ProSA-web: interactive web service for the recognition of errors in three-dimensional structures of proteins. Nucleic Acids Res. 35, W407-W410. https://doi.org/10.1093/nar/gkm290.
  • Yount, N.Y., Andr´es, M.T., Fierro, J.F., Yeaman, M.R., 2007. The gamma-core motif correlates with antimicrobial activity in cysteine-containing kaliocin-1 originating from transferrins. Biochim. Biophys. Acta 1768, 2862-2872. https://doi.org/ 10.1016/j.bbamem.2007.07.024.
  • Yount, N.Y., Yeaman, M.R., 2004. Multidimensional signatures in antimicrobial peptides. Proc. Natl. Acad. Sci. U.S.A. 101, 7363-7368. https://doi.org/10.1073/ pnas.0401567101.
  • Zhang, C., Mortuza, S.M., He, B., Wang, Y., Zhang, Y., 2018. Template-based and free modeling of I-TASSER and QUARK pipelines using predicted contact maps in CASP12. Proteins 86 (Suppl. 1), 136-151. https://doi.org/10.1002/prot.25414.
  • Zhang, J., 2003. Evolution by gene duplication: an update. Trends Ecol. Evol. 18, 292-298. https://doi.org/10.1016/S0169-5347(03)00033-8.
  • Zhu, S., 2008. Discovery of six families of fungal defensin-like peptides provides insights into origin and evolution of the CSalphabeta defensins. Mol. Immunol. 45, 828-838. https://doi.org/10.1016/j.molimm.2007.06.354.
  • Zhu, S., Gao, B., Tytgat, J., 2005. Phylogenetic distribution, functional epitopes and evolution of the CSalphabeta superfamily. Cell. Mol. Life Sci. 62, 2257-2269. https://doi.org/10.1007/s00018-005-5200-6.