Published December 31, 2020 | Version v1
Journal article Restricted

Characterisation of Thai strawberry (Fragaria × ananassa Duch.) cultivars with RAPD markers and metabolite profiling techniques

  • 1. Center of Excellence in Postharvest Technology, Department of Agricultural Science, Faculty of Agriculture Natural Resources and Environment, Naresuan University, Phitsanulok, 65000, Thailand

Description

Sirijan, Mongkon, Drapal, Margit, Chaiprasart, Peerasak, Fraser, Paul D. (2020): Characterisation of Thai strawberry (Fragaria × ananassa Duch.) cultivars with RAPD markers and metabolite profiling techniques. Phytochemistry (112522) 180: 1-9, DOI: 10.1016/j.phytochem.2020.112522, URL: http://dx.doi.org/10.1016/j.phytochem.2020.112522

Files

Restricted

The record is publicly accessible, but files are restricted to users with access.

Linked records

Additional details

Identifiers

LSID
urn:lsid:plazi.org:pub:FFB1FFF4FFBAFFEDFFD7FFABE1370729

References

  • Aaby, K., Ekeberg, D., Skrede, G., 2007. Characterization of phenolic compounds in strawberry (Fragaria × ananassa) fruits by different HPLC detectors and contribution of individual compounds to total antioxidant capacity. J. Agric. Food Chem. 55, 4395-4406. https://doi.org/10.1021/jf0702592.
  • Ahuja, I., Kissen, R., Bones, A.M., 2012. Phytoalexins in defense against pathogens. Trends Plant Sci. 17, 73-90. https://doi.org/10.1016/j.tplants.2011.11.002.
  • Akˇsic ´, F.M., Tosti, T., Sredojevi´c, M., Milivojevi´c, J., Meland, M., Nati´c, M., 2019. Comparison of sugar profile between leaves and fruits of blueberry and strawberry cultivars grown in organic and integrated production system. Plants 8 (7), 205. https://doi.org/10.3390/plants8070205.
  • Almeida, J.R.M., D' Amico, E., Preuss, A., Carbone, F., de Vos, C.H.R., Deiml, B., Mourgues, F., Perrotta, G., Fischer, T.C., Bovy, A.G., Martens, S., Rosati, C., 2007. Characterization of major enzymes and genes involved in flavonoid and proanthocyanidin biosynthesis during fruit development in strawberry (Fragaria xananassa). Arch. Biochem. Biophys. 465, 61-71. https://doi.org/10.1016/j. abb.2007.04.040.
  • Aprea, E., Biasioli, F., Carlin, S., Endrizzi, I., Gasperi, F., 2009. Investigation of volatile compounds in two raspberry cultivars by two headspace techniques: solid-phase microextraction/gas chromatography-mass spectrometry (SPME/GC-MS) and proton-transfer reaction-mass spectrometry (PTR-MS). J. Agric. Food Chem. 57, 4011-4018. https://doi.org/10.1021/jf803998c.
  • Ara, M., Karim, R., Aziz, M., Rezaul, K., Rafiul, I., Monzur, H., 2013. Micropropagation and field evaluation of seven strawberry genotypes suitable for agro-climatic condition of Bangladesh. Afr. J. Agric. Res. 8, 1194-1199. https://doi.org/10.5897/ AJAR12.2255.
  • Basson, C., Groenewald, J.-H., Kossmann, J., Cronj´e, C., Bauer, R., 2010. Sugar and acidrelated quality attributes and enzyme activities in strawberry fruits: invertase is the main sucrose hydrolysing enzyme. Food Chem. 121, 1156-1162. https://doi.org/ 10.1016/j.foodchem.2010.01.064.
  • Burroughs, L.F., 1970. Amino acids. In: Hulme, A.C. (Ed.), The Biochemisry of Furits and Their Products. Academic Press, London and New York, pp. 119-146.
  • Capocasa, F., Scalzo, J., Mezzetti, B., Battino, M., 2008. Combining quality and antioxidant attributes in the strawberry: the role of genotype. Food Chem. 111, 872-878. https://doi.org/10.1016/j.foodchem.2008.04.068.
  • Congiu, L., Chicca, M., Cella, R., Rossi, R., Bernacchia, G., 2000. The use of random amplified polymorphic DNA (RAPD) markers to identify strawberry varieties: a forensic application. Mol. Ecol. 9, 229-232. https://doi.org/10.1046/j.1365- 294x.2000.00811.x.
  • D' Urso, G., Pizza, C., Piacente, S., Montoro, P., 2018. Combination of LC-MS based metabolomics and antioxidant activity for evaluation of bioactive compounds in Fragaria vesca leaves from Italy. J. Pharmaceut. Biomed. Anal. 150, 233-240. https://doi.org/10.1016/j.jpba.2017.12.005.
  • Darrow, G.M.M., 1966. The Strawberry: History, Breeding, and Physiology. Holt, Rinehart and Winston.
  • de Boishebert, V., Giraudel, J.-L., Montury, M., 2006. Characterization of strawberry varieties by SPME-GC-MS and Kohonen self-organizing map. Chemometr. Intell. Lab. Syst. 80, 13-23. https://doi.org/10.1016/j.chemolab.2005.05.003.
  • Degani, C., Rowland, L.J., Levi, A., Hortynski, J.A., Galletta, G.J., 1998. DNA fingerprinting of strawberry (Fragaria × ananassa) cultivars using randomly amplified polymorphic DNA (RAPD) markers. Euphytica 102, 247-253. https://doi. org/10.1023/A:1018385715007.
  • Deng, Y., Lu, S., 2017. Biosynthesis and regulation of phenylpropanoids in plants. CRC Crit. Rev. Plant Sci. 36, 257-290. https://doi.org/10.1080/ 07352689.2017.1402852.
  • Dixon, R.A., 2001. Natural products and plant disease resistance. Nature 411, 843-847. https://doi.org/10.1038/35081178.
  • Dixon, R.A., Xie, D.-Y., Sharma, S.B., 2005. Proanthocyanidins-a final frontier in flavonoid research? New Phytol. 165, 9-28. https://doi.org/10.1111/j.1469- 8137.2004.01217.x.
  • Edger, P.P., Poorten, T.J., VanBuren, R., Hardigan, M.A., Colle, M., McKain, M.R., Smith, R.D., Teresi, S.J., Nelson, A.D.L., Wai, C.M., Alger, E.I., Bird, K.A., Yocca, A. E., Pumplin, N., Ou, S., Ben-Zvi, G., Brodt, A., Baruch, K., Swale, T., Shiue, L., Acharya, C.B., Cole, G.S., Mower, J.P., Childs, K.L., Jiang, N., Lyons, E., Freeling, M., Puzey, J.R., Knapp, S.J., 2019. Origin and evolution of the octoploid strawberry genome. Nat. Genet. 51, 541-547. https://doi.org/10.1038/s41588-019-0356-4.
  • Enfissi, E.M.A., Barneche, F., Ahmed, I., Lichtle, C., Gerrish, C., McQuinn, R.P., Giovannoni, J.J., Lopez-Juez, E., Bowler, C., Bramley, P.M., Fraser, P.D., 2010. Integrative transcript and metabolite analysis of nutritionally enhanced DE- ETIOLATED1 downregulated tomato fruit. Plant Cell 22, 1190-1215. https://doi. org/10.1105/tpc.110.073866.
  • Fait, A., Hanhineva, K., Beleggia, R., Dai, N., Rogachev, I., Nikiforova, V.J., Fernie, A.R., Aharoni, A., 2008. Reconfiguration of the achene and receptacle metabolic networks during strawberry fruit development. Plant Physiol. 148 https://doi.org/10.1104/ pp.108.120691, 730 LP - 750.
  • Forney, C., Kalt, W., Jordan, M., 2000. The composition of strawberry aroma is influenced by cultivar, maturity, and storage. Hortscience 35. https://doi.org/ 10.21273/HORTSCI.35.6.1022.
  • Gaafar, R., M M, S., 2006. Monitoring of cultivars identity and genetic stability in strawberry varieties grown in Egypt. World J. Agric. Sci. 2.
  • in P.B. and M.B. Galili, S., Amir, R., Galili, G.B.T.-A., 2008. Genetic engineering of amino acid metabolism in plants. In: Bioengineering and Molecular Biology of Plant Pathways. Pergamon, pp. 49-80. https://doi.org/10.1016/S1755-0408(07)01003-X.
  • Garcia, M.G., Ontivero, M., Diaz Ricci, J.C., Castagnaro, A., 2002. Morphological traits and high resolution RAPD markers for the identification of the main strawberry varieties cultivated in Argentina. Plant Breed. 121, 76-80. https://doi.org/10.1046/ j.1439-0523.2002.00671.x.
  • Giampieri, F., Alvarez-Suarez, J.M., Mazzoni, L., Romandini, S., Bompadre, S., Diamanti, J., Capocasa, F., Mezzetti, B., Quiles, J.L., Ferreiro, M.S., Tulipani, S., Battino, M., 2013. The potential impact of strawberry on human health. Nat. Prod. Res. 27, 448-455. https://doi.org/10.1080/14786419.2012.706294.
  • Gidoni, D., Rom, M., Kunik, T., Zur, M., Izsak, E., Izhar, S., Firon, N., 1994. Strawberrycultivar identification using randomly amplified polymorphic DNA (RAPD) markers. Plant Breed. 113, 339-342. https://doi.org/10.1111/j.1439-0523.1994.tb00747.x.
  • Guo, N., Hu, Z., Fan, X., Zheng, J., Zhang, D., Xu, T., Yu, T., Wang, Y., Li, H., 2012. Simultaneous determination of salidroside and its aglycone metabolite p-tyrosol in rat plasma by liquid chromatography-tandem mass spectrometry. Molecules 17, 4733-4754. https://doi.org/10.3390/molecules17044733.
  • Hancock, J.F., 1999. Strawberries, Agriculture Series. CABI Pub.
  • H´ebert, C., Charles, M., Gauthier, L., Willemot, C., Khanizadeh, S., Cousineau, J., 2002. Strawberry proanthocyanidins: biochemical markers for botrytis cinerea resistance and shelf-life predictability. Acta Hortic. 567, 659-662. https://doi.org/10.17660/ ActaHortic.2002.567.143.
  • Jetti, R.R., Yang, E., Kurnianta, A., Finn, C., Qian, M.C., 2007. Quantification of selected aroma-active compounds in strawberries by headspace solid-phase microextraction gas chromatography and correlation with sensory descriptive analysis. J. Food Sci. 72, 487-496. https://doi.org/10.1111/j.1750-3841.2007.00445.x.
  • Jia, H., Wang, Y., Sun, M., Li, B., Han, Y., Zhao, Y., Li, X., Ding, N., Li, C., Ji, W., Jia, W., 2013. Sucrose functions as a signal involved in the regulation of strawberry fruit development and ripening. New Phytol. 198, 453-465. https://doi.org/10.1111/ nph.12176.
  • Kallscheuer, N., Menezes, R., Foito, A., Henriques da Silva, M.D., Braga, A., Dekker, W., M´endez Sevillano, D., Rosado-Ramos, R., Jardim, C., Oliveira, J., Ferreira, P., Rocha, I., Silva, A.R., Sousa, M., Allwood, J.W., Bott, M., Faria, N., Stewart, D., Ottens, M., Naesby, M., Santos, C.N. dos, Marienhagen, J., 2019. Identification and microbial production of the raspberry phenol salidroside that is active against Huntington' s disease. Plant Physiol. 01074.2018. https://doi.org/10.1104/ pp.18.01074.
  • Karim, M.R., Azis, A.M., Krishna, U., Aminul, M., Monzur, M., 2011. In vitro response of strawberry (Fragaria x Ananassa Dutch.) for callus induction and shoot regeneration. Int. J. Agron. Agric. Res. 1, 29-36.
  • Kliebenstein, D.J., 2004. Secondary metabolites and plant/environment interactions: a view through Arabidopsis thaliana tinged glasses. Plant Cell Environ. 27, 675-684. https://doi.org/10.1111/j.1365-3040.2004.01180.x.
  • Kuras, A., Korbin, M., zurawicz ˙, E., 2004. Comparison of suitability of RAPD and ISSR techniques for determination of strawberry (Fragaria ×ananassa Duch.) relationship. Plant Cell Tissue Organ Cult. 79, 189-193. https://doi.org/10.1007/s11240-004- 0659-7.
  • Landmann, C., Fink, B., Schwab, W., 2007. FaGT2: a multifunctional enzyme from strawberry (Fragaria x ananassa) fruits involved in the metabolism of natural and xenobiotic compounds. Planta 226, 417-428. https://doi.org/10.1007/s00425-007- 0492-4.
  • Lopes-da-Silva, M., de Pascual-Teresa, S., Rivas-Gonzalo, J., Santos-Buelga, C., 2002. Identification of anthocyanin pigments in strawberry (cv Camarosa) by LC using DAD and ESI-MS detection. Eur. Food Res. Technol. 214, 248-253. https://doi.org/ 10.1007/s00217-001-0434-5.
  • Miedes, E., Vanholme, R., Boerjan, W., Molina, A., 2014. The role of the secondary cell wall in plant resistance to pathogens. Front. Plant Sci. 5, 358. https://doi.org/ 10.3389/fpls.2014.00358.
  • Morales, R.G.F., Resende, J.T.V., Faria, M.V., Andrade, M.C., Resende, L.V., Delatorre, C. A., Silva, P.R. da, 2011. Genetic similarity among strawberry cultivars assessed by RAPD and ISSR markers. Sci. Agric. 68 (6), 665-670. https://doi.org/10.1590/ S0103-90162011000600010.
  • Nei, M., Li, W.H., 1979. Mathematical model for studying genetic variation in terms of restriction endonucleases. Proc. Natl. Acad. Sci. U.S.A. (76), 5269-5273. https://doi. org/10.1073/pnas.76.10.5269.
  • Nogueira, M., Mora, L., Enfissi, E.M., Bramley, P.M., Fraser, P.D., 2013. Subchromoplast sequestration of carotenoids affects regulatory mechanisms in tomato lines expressing different carotenoid gene combinations. Plant Cell 25, 4560-4579. https://doi.org/10.1105/tpc.113.116210.
  • Osorio, S., Mutnoz, C., Valpuesta, V., 2010. Physiology and Biochemistry of Fruit Flavors. Handb. Fruit Veg. Flavors. Wiley Online Books. https://doi.org/10.1002/ 9780470622834.ch2.
  • Pavlicek, A., Hrd´a, S., Flegr, J., 1999. Free-Tree-freeware program for construction of phylogenetic trees on the basis of distance data and bootstrap/jackknife analysis of the tree robustness. Application in the RAPD analysis of genus Frenkelia. Folia Biol. (45), 97-99.
  • P´erez, A.G., Olias, R., Luaces, P., Sanz, C., 2002. Biosynthesis of strawberry aroma compounds through amino acid metabolism. J. Agric. Food Chem. 50, 4037-4042. https://doi.org/10.1021/jf011465r.
  • Perez, A.G., Rios, J.J., Sanz, C., Olias, J.M., 1992. Aroma components and free amino acids in strawberry variety Chandler during ripening. J. Agric. Food Chem. 40, 2232-2235. https://doi.org/10.1021/jf00023a036.
  • Pipattanawong, N., Thongyeun, B., Tacha, W., Tiwong, S., Akagi, H., 2011. Strawberry cultivar praratchatan 80. Agric. News 56, 22-28.
  • Radmann, E., Jotao, B., Oliveira, R., Fachinello, J., 2006. Characterization and genetic diversity of strawberry cultivars. Hortic. Bras. 24, 84-87.
  • Rolland, F., Sheen, J., 2005. Sugar sensing and signalling networks in plants. Biochem. Soc. Trans. 33, 269-271.
  • Ruuhola, T., Salminen, P., Salminen, J.-P., Ossipov, V., 2013. Ellagitannins: defences of Betula nana against Epirrita autumnata folivory? Agric. For. Entomol. 15, 187-196. https://doi.org/10.1111/afe.12001.
  • Sakila, S., Ahmed, M.B., Roy, U., Biswas, M., Karim, R., Razvy, M.A., Hossain, M., Islam, R., Hoque, M., 2007. Micro propagation of Strawberry (Fragaria X ananassa Duch.) a newly introduced crop in Bangladesh. Am.-Eurasian J. Sci. Res. 2, 151-154.
  • Sanz, C., Olias, J.M., P´erez, A.G., 1997. Aroma biochemistry of fruits and vegetables. In: Tom´as Barberan ´, F.A., Robins, R.J. (Eds.), Phytochemistry of Fruit and Vegetables. Clarendon Press, Oxford, UK, pp. 125-255.
  • Schauer, N., Fernie, A.R., 2006. Plant metabolomics: towards biological function and mechanism. Trends Plant Sci. 11, 508-516. https://doi.org/10.1016/j. tplants.2006.08.007.
  • Schwab, W., Raab, T., 2004. In: Dris, R., Jain, S.M. (Eds.), Developmental Changes during Strawberry Fruit Ripening and Physico-Chemical Changes during Postharvest Storage BT - Production Practices and Quality Assessment of Food Crops: Quality Handling and Evaluation. Springer Netherlands, Dordrecht, pp. 341-369. https:// doi.org/10.1007/1-4020-2534-3_13.
  • Schwab, W., Schreier, P., 2002. Enzymic formation of flavor volatiles from lipids. In: Kuo, T.M., Gardner, H. (Eds.), Lipid Biotechnology. Marcel Dekker, New York, basel, pp. 293-318.
  • Aharoni, A., Bennetzen, J.L., Salzberg, S.L., Dickerman, A.W., Velasco, R., Borodovsky, M., Veilleux, R.E., Folta, K.M., 2011. The genome of woodland strawberry (Fragaria vesca). Nat. Genet. 43, 109-116. https://doi.org/10.1038/ ng.740.
  • Sirijan, M., Pipattanawong, N., Chaiprasart, P., 2019. Effect of 1-naphthalene Acetic Acid and 6-benzyladenine on Micropropagation of Strawberry Cultivar 'Praratchatan No.80' https://doi.org/10.34044/j.anres.2019.53.4.xx.
  • Sugimoto, T., Tamaki, K., Matsumoto, J., Yamamoto, Y., Shiwaku, K., Watanabe, K., 2005. Detection of RAPD markers linked to the everbearing gene in Japanese cultivated strawberry. Plant Breed. 124, 498-501. https://doi.org/10.1111/j.1439- 0523.2005.01144.x.
  • Tressl, R., Drawert, F., 1973. Biogenesis of banana volatiles. J. Agric. Food Chem. 21, 560-565. https://doi.org/10.1021/jf60188a031.
  • Turhan, E., Eris, A., 2009. Changes of growth, amino acids, and ionic composition in strawberry plants under salt stress conditions. Commun. Soil Sci. Plant Anal. 40, 3280-3294. https://doi.org/10.1080/00103620903325927.
  • Vallarino, J.G., de Abreu e Lima, F., Soria, C., Tong, H., Pott, D.M., Willmitzer, L., Fernie, A.R., Nikoloski, Z., Osorio, S., 2018. Genetic diversity of strawberry germplasm using metabolomic biomarkers. Sci. Rep. 8, 14386. https://doi.org/ 10.1038/s41598-018-32212-9.
  • Williams, J.G., Kubelik, A.R., Livak, K.J., Rafalski, J.A., Tingey, S.V., 1990. DNA polymorphisms amplified by arbitrary primers are useful as genetic markers. Nucleic Acids Res. 18, 6531-6535. https://doi.org/10.1093/nar/18.22.6531.
  • Winkel-Shirley, B., 2001. Flavonoid biosynthesis. A colorful model for genetics, biochemistry, cell biology, and Biotechnology. Plant Physiol. 126 https://doi.org/ 10.1104/pp.126.2.485, 485 LP - 493.
  • Xia, J., Wishart, D.S., 2016. Using MetaboAnalyst 3.0 for comprehensive metabolomics data analysis. In: Current Protocols in Bioinformatics. John Wiley & Sons, Inc. https://doi.org/10.1002/cpbi.11.
  • Yamashita, I., Iino, K., Nemoto, Y., Yoshikawa, S., 1977. Studies on flavor development in strawberries. 4. Biosynthesis of volatile alcohol and esters from aldehyde during ripening. J. Agric. Food Chem. 25, 1165-1168. https://doi.org/10.1021/ jf60213a027.
  • Zebrowska, J., Tyrka, M., 2003. The use of RAPD markers for strawberry identification and genetic diversity studies. J. Food Agric. Environ. 1.
  • Zhang, J., Wang, X., Yu, O., Tang, J., Gu, X., Wan, X., Fang, C., 2011. Metabolic profiling of strawberry (Fragaria x ananassa Duch.) during fruit development and maturation. J. Exp. Bot. 62, 1103-1118. https://doi.org/10.1093/jxb/erq343.