Published January 31, 2021 | Version v1
Journal article Restricted

Phytochemistry and biological activities of Aglaia species

  • 1. Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Padjadjaran, Jatinangor, 45363, Sumedang, West Java, Indonesia

Description

Harneti, Desi, Supratman, Unang (2021): Phytochemistry and biological activities of Aglaia species. Phytochemistry (112540) 181: 1-24, DOI: 10.1016/j.phytochem.2020.112540, URL: http://dx.doi.org/10.1016/j.phytochem.2020.112540

Files

Restricted

The record is publicly accessible, but files are restricted to users with access.

Linked records

Additional details

Identifiers

LSID
urn:lsid:plazi.org:pub:264FE471FFEBFFE10529CA019D67A070
URL
http://publication.plazi.org/id/264FE471FFEBFFE10529CA019D67A070

References

  • Adams, T.M., El Sous, M., Hawkins, B.C., Hirner, S., Halloway, G., Khoo, M.L., Owen, D. J., Savage, G.P., Scammells, P.J., Rizzacasa, M.A., 2009. Total synthesis of the potent anticancer Aglaia metabolites (-)-silvestrol and (-)-episilvestrol and the active analogue (-)-desmethoxyepisilvestrol. J. Am. Chem. Soc. 131, 1607-1616. https:// doi.org/10.1021/ja808402e.
  • An, F.L., Wang, X.B., Wang, H., Li, Z.R., Yang, M.H., Luo, J., Kong, L.Y., 2016. Cytotoxic rocaglate derivatives from leaves of Aglaia perviridis. Sci. Rep. 28 (6), 20045. https://doi.org/10.1038/srep20045.
  • Awang, K., Loong, X.M., Leong, K.H., Supratman, U., Litaudon, M., Mukhtar, M.P., Mohamad, K., 2012. Triterepenes and steroids from the leaves of Aglaia exima (Meliaceae). Fitoterapia 83, 1391-1395. https://doi.org/10.1016/j. fitote.2012.10.004.
  • Balakrishna, K., Kundu, A.B., 1990. Roxburghiadiol A and B, two 14α- methylsterols from Aglaia roxburghiana. J. Nat. Prod. 53 (2), 523-526. https://doi.org/10.1021/ np50068a044.
  • Benosman, A., Richomme, P., Sevenet, T., Perromat, G., Hadi, A.H.A., Bruneton, J., 1995. Tirucallane triterpenes from the stembark of Aglaia leucophylla. Phytochemistry 40 (5), 1485-1487. https://doi.org/10.1016/0031-9422(95)00415-4.
  • Brader, G., Vajrodaya, S., Greger, H., Bacher, M., Kslchhauser, H., Hofer, O., 1998. Bisamides, Lignans, Triterpenes, and insecticidal cyclopenta[b]benzofurans from Aglaia species. J. Nat. Prod. 61, 1482-1490. https://doi.org/10.1021/np9801965.
  • Cai, X.H., Luo, X.D., Zhou, J., Hao, X.J., 2005. Compound representatives of a new type of triterpenoid from Aglaia odorata. Org. Lett. 7 (14), 2877-2879. https://doi.org/ 10.1021/ol050805h.
  • Chaidir, Hiort, J., Nugroho, B.W., Bohnenstengel, F.I., Wray, V., Witte, L., Hung, P.D., Kiet, L.C., Sumaryono, W., Proksch, P., 1999. New insecticidal rocaglamide derivatives from flowers of Aglaia duperreana (Meliaceae). Phytochemistry 52, 837-842. https://doi.org/10.1016/S0031-9422(99)00327-1.
  • Chaidir, Lin, W.H., Ebel, R., Edrada, R.A., Wray, V., Nimtz, M., Sumaryono, W., Proksch, P., 2001. Rocaglamide, glycosides, and putrescine bisamides from Aglaia dasyclada. J. Nat. Prod. 64, 1216-1220. https://doi.org/10.1021/np0102354.
  • Chin, Y.W., Chae, H.S., Lee, J., Bach, T.T., Ahn, K.S., Lee, H.K., Joung, H., Oh, S.R., 2010. Bisamides from the twigs of Aglaia perviridis collected in Vietnam. Bull. Kor. Chem. Soc. 31 (9), 2665-2667. https://doi.org/10.5012/bkcs.2010.31.9.2665.
  • Dreyer, M., Nugroho, B.W., Bohnenstengel, F.I., Ebel, R., Wray, V., Witte, L., Bringmann, G., Muhlbacher, J., Herold, M., Hung, P.D., Kiet, L.C., Proksch, P., 2001. New insecticidal rocaglamide derivatives and related compounds from Aglaia oligophylla. J. Nat. Prod. 64, 415-420. https://doi.org/10.1021/np000123x.
  • Dumontet, V., Thoison, O., Omobuwajo, R., Martin, M.T., Perromat, G., Chiaroni, A., Riche, C., Pais, M., Sevenet, T., 1996. New nitrogenous and aromatic derivatives from Aglaia argentea and A. forbessi. Tetrahedron 52 (20), 6931-6942. https://doi. org/10.1016/0040-4020(96)00322-5.
  • Duong, T.N., Edrada, R.A., Ebel, R., Wray, V., Frank, W., Duong, A.T., Lin, W.H., Proksch, P., 2007. Putrescine bisamides from Aglaia gigantea. J. Nat. Prod. 70, 1640-1643. https://doi.org/10.1021/np070184w.
  • El Sous, M., Khoo, M.L., Holloway, G., Owen, D., Scammells, P.J., Rizzacasa, M.A., 2007. Total synthesis of (-)-episilvestrol and (-)- silvestrol. Angew. Chem. Int. Ed. 46, 7835-7838. https://doi.org/10.1002/anie.200702700.
  • Engelmeier, D., Hadacek, F., Pacher, T., Vajrodaya, S., Greger, H., 2000. Cyclopenta[b] benzofurans from Aglaia species with pronounced antifungal activity against Rice Blast Fungus (Pyricularia grisea). J. Agric. Food Chem. 48, 1400-1404. https://doi. org/10.1021/jf990509h.
  • Farabi, K., Harneti, D., Nurlelasari, Maharani, R., Hidayat, A.C., Awang, K., Supratman, U., Shiono, Y., 2017a. New cytotoxic protolimonoids from the stem bark of Aglaia argentea (Meliaceae). Phytochem. Lett. 21, 211-215. https://doi.org/ 10.1016/j.phytol.2017.07.006.
  • Farabi, K., Harneti, D., Nurlelasari, Maharani, R., Hidayat, A.C., Supratman, U., Awang, K., Shiono, Y., 2017b. Cytotoxic steroids from the bark of Aglaia argentea (Meliaceae). CMU. J. Nat. Sci. 16 (4), 293-306. https://doi.org/10.12982/ CMUJNS.2017.0024.
  • Farabi, K., Harneti, D., Nurlelasari, Maharani, R., Hidayat, A.C., Awang, K., Supratman, U., Shiono, Y., 2018. New cytotoxic pregnane-type steroid from the stem bark of Aglaia elliptica (Meliaceae). Record Nat. Prod. 12 (2), 121-127. https://doi. org/10.25135/rnp.21.17.07.118.
  • Fuzzati, N., Dyatmiko, W., Rahman, A., Achmad, F., Hostettmann, K., 1996. Triterpenoids, lignans and a benzofuran derivative from the bark of Aglaia elaeagnoidea. Phytochemistry 42 (5), 1395-1398. https://doi.org/10.1016/0031- 9422(96)00130-6.
  • Greger, H., Pacher, T., Brem, B., Bacher, M., Hofer, O., 2001. Insecticidal flavaglines and other compounds from Fijian Aglaia species. Phytochemistry 57, 57-64. https://doi. org/10.1016/S0031-9422(00)00471-4.
  • Hayashi, N., Lee, K.H., Hall, I.H., McPhail, A.T., Huang, H.C., 1982. Structure and stereochemistry of (-)-odorinol, an antileukemic diamide from Aglaia odorata. Phytochemistry 21 (9), 2371-2373. https://doi.org/10.1016/0031-9422(82)85208- 4.
  • Harneti, D., Tjokronegoro, R., Safari, A., Supratman, U., Loong, X.M., Mukhtar, M.R., Mohamad, K., Awang, K., Hayashi, H., 2012. Cytotoxic triterpenoids from the bark of Aglaia smithii (Meliaceae). Phytochem. Lett. 5, 496-499. https://doi.org/10.1016/j. phytol.2012.04.013.
  • Harneti, D., Supriadin, S., Ulfah, M., Safari, A., Supratman Awang, K., Hayashi, H., 2014. Cytotoxic constituents from the bark of Aglaia eximia (Meliaceae). Phytochem. Lett. 8, 28-31.
  • Heyne, K., 1987. "The Useful Indonesian Plants", Research and Development Agency. Ministry of Forestry, Jakarta, Indonesia, pp. 1029-1045.
  • Hidayat, A.T., Farabi, K., Harneti, H., Nurlelasari Maharani, R., Nurfarida, I., Supratman, U., Shiono, Y., 2018. Cytotoxic triterpenoids from the stembark of Aglaia argentea (Meliaceae). Indones. J. Chem. 18 (1), 35-42. https://doi.org/10.22146/ ijc.25052.
  • Hidayat, A.T., Farabi, K., Harneti, D., Nurlelasari Maharani, R., Mayanti, T., Supratman, U., Shiono, Y., 2017. A cytotoxic rocaglate compound from the stembark of Aglaia argentea (Meliaceae). Molekul 20 (2), 146-152. https://doi.org/10.20884/ 1.jm.2017.12.2.301.
  • Hofer, O., Pointinger, S., Brecker, L., Peter, K., Greger, H., 2009. Silvaglenamin- a novel dimeric triterpene alkaloid from Aglaia silvestris. Tetrahedron Lett. 50, 467-468. https://doi.org/10.1016/j.tetlet.2008.11.048.
  • Hutagaol, R.P., Harneti, D., Hidayat, A.T., Nurlelasari Maharani, R., Katja, D.G., Supratman, U., Awang, K., Shiono, Y., 2020. 22E,24S)-24-Propylcholest-5en-3α- acetate: a new steroid from the bark Aglaia angustifolia (Miq.) (Meliaceae), p. M1112. https://doi.org/10.3390/M1112.
  • Hwang, B.Y., Su, B.N., Chai, H., Mi, Q., Kardono, L.B.S., Afriastini, J.J., Riswan, S., Santarsiero, B.D., Masecar, A.D., Wild, R., Fairchild, C.R., Vite, G.D., Rose, W.C., Farnsworth, N.R., Cordell, G.A., Pezzuto, J.M., Swanson, S.M., Kinghorn, A.D., 2004. Silvestrol and episilvestrol, potential anticancer rocaglate derivatives from Aglaia silvestris. J. Org. Chem. 69, 3350-3358. https://doi.org/10.1021/jo040120f.
  • Inada, A., Shono, K., Murata, H., Inatomi, Y., Darnaedi, D., Nakanishi, T., 2000. Three putrescine bisamides from the leaves of Aglaia grandis. Phytochemistry 53, 1091-1095. https://doi.org/10.1016/s0031-9422(99)00519-1.
  • Inada, A., Murata, H., Inatomi, Y., Nakanishi, T., 1995. Cycloartane triterpenes from the leaves of Aglaia harmsiana. J. Nat. Prod. 58 (7), 1143-1146. https://doi.org/ 10.1021/np50121a030.
  • Inada, A., Murata, H., Inatomi, Y., Nakanishi, T., Darnaedi, D., 1997a. Pregnanes and triterpenoid hydroperoxides from the leaves of Aglaia grandis. Phytochemistry 45 (6), 1225-1228. https://doi.org/10.1016/S0031-9422(97)00145-3.
  • Inada, A., Ohtsuki, S., Surano, T., Murata, H., Inatomi, Y., Darnaedi, D., Nakanishi, T., 1997b. Cycloartane triterpenes from Aglaia harmsiana. Phytochemistry 46 (2), 379-381.
  • Inada, A., Sorano, T., Murata, H., Inatomi, Y., Darnaedi, D., Nakanishi, T., 2001. Diamide derivatives and cycloartanes from the leaves of Aglaia elliptica. Chem. Pharm. Bull. 49 (9), 1226-1228. https://doi.org/10.1248/cpb.49.1226.
  • Ishibashi, F., Satasook, C., Isman, M.B., Towers, G.H.N., 1993. Insceticidal 1H-cyclopentatetrahydro[b]benzofurans from Aglaia odorata. Phytochemistry 32 (2), 307-310. https://doi.org/10.1016/S0031-9422(00)94986-O.
  • Janprasert, J., Satasook, C., Sukumalanand, P., Champagne, D.E., Isman, M.B., Wiriyachitra, P., Towers, G.H.N., 1993. Rocaglamide, a natural benzofuran insecticide from Aglaia odorata. Phytochemistry 32 (1), 67-69. https://doi.org/ 10.1016/0031-9422(92)800108-Q.
  • Janaki, S., Vijayasekaran, V., Visuanathan, S., Balakhrisna, K., 1999. Antiinflamatory activity of Aglaia roxburghiana var beddomei extract and triterpens roxburgghiadiol A and B. J. Ethnopharmacol. 67, 45-51. https://doi.org/10.1016/s0378-8741(99) 00063-x.
  • Joycharat, N., Greger, H., Hofer, O., Saifah, E., 2008a. Flavaglines and triterpenes as chemical markers of Aglaia oligophylla. Biochem. Systemat. Ecol. 36, 584-587. https://doi.org/10.1016/j.bse.2008.03.009.
  • Joycharat, N., Greger, H., Hofer, O., Saifah, E., 2008. Flavaglines and triterpenoids from the leaves of Aglaia forbessi. Phytochemistry 69, 206-211. https://doi.org/10.1016/ j.phytochem.2007.06.016.
  • Joycharat, N., Plodpai, P., Panthong, K., Yingyongnarongkul, B.E., Voravuthikunchai, S. P., 2010. Terpenoid constituents and antifungal activity of Aglaia forbessi seed against phytopathogens. Can. J. Chem. 88, 937-944. https://doi.org/10.1016/j. phytochem.2007.06.016.
  • Kim, S., Chin, Y.W., Su, B.N., Riswan, S., Kardono, L.B.S., Afriastini, J.J., Chai, H., Farnsworth, N.R., Cordell, G.A., Swanson, S.M., Kinghorn, A.D., 2006a. Cytotoxic flavaglines and bisanides from Aglaia edulis. J. Nat. Prod. 69, 1769-1775. https:// doi.org/10.1021/np060428x.
  • Kim, S., Salim, A.A., Swanson, S.M., Kinghorn, A.D., 2006b. Potential of cyclopenta[b] benzofurans from Aglaia species in cancer chemotherapy. Anti Canc. Agents Med. Chem. 6, 319-345. https://doi.org/10.2174/187152006777698123.
  • Kim, S., Hwang, B.Y., Su, B.N., Chai, H., Mi, Q., Kinghorn, A.D., Wild, R., Swanson, S.M., 2007. Silvestrol, a potential anticancer rocaglate derivative from Aglaia foveolata, Induces apoptosis in LNCaP cells through the mitochondrial/apoptosome pathway without activation of executioner caspase-3 or -7. Anticancer Res. 27, 2175-2184.
  • King, M.L., Chiang, C.C., Ling, H.C., Fujita, E., Ochiai, M., McPhail, A.T., 1982. X-ray crystal structure of rocaglamide, a novel antileukemic 1H-cyclopenta[b]benzofuran from Aglaia elliptifolia. J. Chem. Soc. Chem. Commun. 1150-1151. https://doi.org/ 10.1039/C90B00775J.
  • Kokpol, U., Vanaskulchai, B., Simpson, J., Weavers, R.T., 1994. Isolation and X-ray structure determination of novel pyrimidinone from Aglaia odorata. J. Chem. Soc. Chem. Commun. 773-774. https://doi.org/10.1021/jacs.8611477.
  • Kurniasih, N., Milawati, H., Fajar, M., Hidayat, A.T., Abdullah, R., Harneti, D., Supratman, U., Taib, M.N.A.B.M., 2018. Sesquiterpenoids compounds from the stembark of Aglaia minahassae (Meliaceae). Molekul 13 (1), 56-62. https://doi.org/ 10.20884/1.jm.2018.13.1.410.
  • Leong, K.H., Looi, C.Y., Loong, X.M., Cheah, F.K., Supratman, U., Litaudon, M., Mustafa, M.R., Awang, K., 2016. Cycloart-24-ene-26-ol-3-one, a new cycloartane isolated from leaves of Aglaia exima triggers tumour necrosis factor- receptor 1- mediated caspase-dependent apoptosis in colon cancer cell line. PloS One 4, 1-17. https://doi.org/10.1371/journal.pone.0152652.
  • Liu, S., Liu, S.B., Zuo, W., Guo, Z., Mei, W., Dai, H., 2014. New sesquiterpenoids from Aglaia odorata var. Microphyllina and their cytotoxic activity. Fitoterapia 92, 93-99. https://doi.org/10.1016/j.pitote.2013.10.013.
  • Mabberley, D.J., Pannell, C.M., Sing, A.M., 1995. Meliceae Flora Malesiana, vol. 12, pp. 1-407.
  • Milawati, H., Harneti, D., Maharani, R., Nurlelasari Hidayaat, A.T., Azmi, M.N., Shiono, Y., Supratman, U., 2019. Caryophyllen-type sesquiterpenoids from the stembark of Aglaia harmsiana and their cytotoxic activity against MCF-7 breast cancer cells. Molekul 14 (2), 126-132. https://doi.org/10.20884/1. jm.2019.14.2.543.
  • Mohamad, K., Sevenet, T., Dumontet, V., Pais, M., Tri, M.V., Hadi, H., Awang, K., Martin, M.T., 1999a. Dammarane triterpenes and pregnane steroids from Aglaia lawii and A. tomentosa. Phytochemistry 51, 1031-1037. https://doi.org/10.1016/ S0031-9422(99)00053-9.
  • Mohamad, K., Martin, M.T., Najdar, H., Gaspard, C., Sevenet, T., Awang, K., Hadi, H., Pain, M., 1999b. Cytotoxic 3,4-secoapotirucallanes from Aglaia argentea bark. J. Nat. Prod. 62, 868-872. https://doi.org/10.1021/np990013u.
  • Muellner, A.N., Samuel, R., Chase, M.W., Pannell, C.M., Greger, H., 2005. Aglaia (Meliaceae): an evaluation of taxonomic concepts based on DNA data and Secondary metabolites. Am. J. Bot. 92 (3), 534-543. https://doi.org/10.3732/ajb.92.3.534.
  • Molleyres, L.P., Rindlisbacher, A., Winkler, T., Kumar, V., 1999. Insectisidal natural products: new rocaglamide derivatives from Aglaia roxburghiana. Pestic. Sci. 55 (4), 486-503. https://doi.org/10.1002/1096-9063(199904)55:4.
  • Nugroho, B.W., Edrada, R.A., Gussregen, B., Wray, V., Witte, L., Proksch, P., 1997a. Insecticidal rocaglamide derivatives from Aglaia duppereana. Phytochemistry 44 (8), 1445-1461. https://doi.org/10.1016/S0031-9422(96)00763-7.
  • Nugroho, B.W., Gussregen, B., Wray, V., Witte, L., Bringmann, G., Proksch, P., 1997b. Insecticidal rocaglamide derivatives from Aglaia elliptica and A. harmsiana. Phytochemistry 45 (8), 1579-1585. https://doi.org/10.1016/S0031-9422(97) 00253-7.
  • Nugroho, B.W., Edrada, R.A., Wray, V., Witte, L., Bringmann, G., Gehling, M., Proksch, P., 1999. An insecticidal rocaglamide derivatives and related compounds from Aglaia odorata (Meliaceae). Phytochemistry 51, 367-376. https://doi.org/ 10.1016/S0031-9422(98)00751-1.
  • Omobuwajo, O.R., Martin, M.T., Perromat, G., Sevenet, T., Pais, M., 1996. Apotirucallane triterpenes from Aglaia argentea. J. Nat. Prod. 59, 614-617. https:// doi.org/10.1021/np960159i.
  • Omobuwajo, O.R., Martin, M.T., Perromat, G., Sevenet, T., Awang, K., Pais, M., 1996b. Cytotoxic cycloartanes from Aglaia argentea. Phytochemistry 41 (5), 1325-1328. https://doi.org/10.1016/0031-9422(95)00745-8.
  • Pan, L., Kardono, L.B.S., Riswan, S., Chai, H., Blanco, E.J.C., Pannell, C.M., Soejarto, D. D., McCloud, T.G., Newman, D.J., Kinghorn, A.D., 2010. Isolation and characterization of minor analogues of silvestrol and other constituents from large-scale re-collection of Aglaia foveolata. J. Nat. Prod. 73, 1873-1878. https://doi.org/ 10.1021/np100503q.
  • Pan, L., Acuna, U.M., Li, J., Jena, N., Ninh, T.N., Pannell, C.M., Chai, H., Fuchs, J.R., Carcache, E.J., Soejarto, D.D., Kinghorn, D., 2013. Bioactive flavaglines and other constituents isolated from Aglaia perviridis. J. Nat. Prod. 76 (3), 394-404. https:// doi.org/10.1021/np3007588.
  • Pan, L., Woodard, J.L., Lucas, D.M., Fuchsa, J.R., Kinghorn, A.D., 2014. Rocaglamide, silvestrol and structurally related bioactive compounds from Aglaia species. Nat. Prod. Rep. 32, 924-929. https://doi.org/10.1039/c4np00006d.
  • Pannell, C.M., 1992. Taxonomic monograph of the genus Aglaia Lour. (Meliaceae). In: Kew Bulletin Additional Series XVI. HMSO: Kew, Richmond, Surrey, UK.
  • P´erez, L.B., Still, P.C., Naman, B.C., Ren, Y., Pan, L., Chai, H.-B., Carcache de Blanco, E.J., Ninh, T.N., Thanh, B.V., Swanson, S.M., Soejarto, D.D., Kinghorn, A.D., 2014. Investigation of Vietnamese plants for potential anticancer agents. Phytochemistry Rev. 25, 203-206. https://doi.org/10.1007/s11101-014-9335-7.
  • Pointinger, S., Promdang, S., Vajrodaya, S., Pannell, C.M., Hofer, O., Mereiter, K., Greger, H., 2008. Silvaglins and related 2,3-secodammarane derivative - unusual types of triterpenes from Aglaia silvestris. Phytochemistry 69, 2696-2703. https:// doi.org/10.1016/j.pyhtochem.2008.08.025.
  • Proksch, P., Edrada, R., Ebel, R., Bohnenstengel, F.I., Nugroho, B.W., 2001. Chemistry and Biological activity of rocaglamide derivatives and related compounds in Aglaia species (Meliaceae). Curr. Org. Chem. 5, 923-938. https://doi.org/10.2174/ 1385272013375049.
  • Qiu, S.X., Hung, N.V., Xuan, L.T., Gu, J.Q., Lobkovsky, E., Khanh, T.C.K., Soejarto, D.D., Clardy, J., Pezzuto, J.M., Dong, Y., Tri, M.V., Huong, L.M., Fong, H.H.S., 2001. A pregnane steroid from Aglaia lawii and structure confirmation of cabraleadiol monoacetate by X-ray crystallography. Phytochemistry 56, 775-780. https://doi. org/10.1016/s0031-9422(00)00463-5.
  • Rivero-Cruz, J.F., Chai, H.B., Kardono, L.B.S., Setyowati, F.M., Afriatini, J.J., Riswan, S., Farnsworth, N.S., Cordell, G.A., Pezzuto, J.M., Swanson, S.M., Kinghorn, A.D., 2004. Cytotoxic constituents of the twigs and leaves of Aglaia rubiginosa. J. Nat. Prod. 67, 343-347. https://doi.org/10.1021/np0304417.
  • Roux, D., Martin, M.T., Adeline, M.T., Sevent, T., Hadi, A.H.A., Pais, M., 1998. Faveolins A and B, dammarane triterpenes from Aglaia foveolata. Phytochemistry 49 (6), 1745-1748. https://doi.org/10.1016/S0031-9422(98)00305-7.
  • Saifah, E., Suttisri, R., Shamsub, S., Pengsuparp, T., Lipipun, V., 1999. Bisamides from Aglaia edulis. Phytochemistry 52, 1085-1088. https://doi.org/10.1016/S0031-9422 (99)00378-7.
  • Salim, A.A., Chai, H.B., Rachman, I., Riswan, S., Kardono, L.B.S., Farnsworth, N.R., Carcache-Blanco, E.J., Kinghorn, A.D., 2007. Constituents of the leaves and stem bark of Aglaia foveolata. Tetrahedron 63, 7926-7934. https://doi.org/10.1016/j. tet.2007.05.074.
  • Schneider, C., Bohnenstengel Nugroho, B.W., Way, V., Witte, L., Hung, P.D., Kiet, L.C., Proksch, P., 2000. Insecticidal rocaglamide derivatives from Aglaia spectabilis (Meliaceae). Phytochemistry 54, 731-736. https://doi.org/10.1016/s0031-9422 (00)00205-3.
  • Seger, C., Pointinger, S., Greger, H., Hofer, O., 2008. Isoeichlerianic acid from Aglaia silvestris and revision of the stereochemistry of foveolin B. Tetrahedron Lett. 49, 4313-4315. https://doi.org/10.1016/j.tetlet.2008.04.109.
  • Shiengthong, D., Kokpol, U., Karntiang, P., Massy-Westropp, R.A., 1974. Triterpenoid constituents of Thai medicinal plants - II. Isomeric aglaitriols and aglaiondiol. Tetrahedron 30, 2211-2215. https://doi.org/10.1016/S0040-4020(01)97360-0.
  • Shiengthong, D., Verasarn, A., Nanonggai-Suwanrath, P., Warnhoff, E.W., 1965. Constituents of Thai medicinal plants - I. Aglaiol. Tetrahedron 21, 917-924. https:// doi.org/10.1016/00404020(65)80028-X.
  • Sianturi, J., Harneti, D., Darwati, Mayanti, T., Supratman, U., Awang, K., 2016. A new (-)-5',6-dimethoxyisolariciresinol-(3'',4''-dimethoxy)-3α- O-β- D-glucopyranosides from the bark of Aglaia eximia (Meliaceae). Nat. Prod. Res. 30 (19), 2204-2208.
  • Sianturi, J., Purnamasari, M., Darwati, Harneti, D., Mayanti, D., Supratman, U., Awang, K., Hayashi, H., 2015. New bisamide compounds from the bark of Aglaia eximia (Meliaceae). Phytochem. Lett. 13, 297-301. https://doi.org/10.1016/j. phytol.2015.07.003.
  • Su, B.N., Chai, H., Mi, Q., Riswan, S., Kardono, L.B.S., Afriastini, J.J., Santarsiero, B.D., Mesecar, A.D., Farnsworth, N.R., Cordell, G.A., Swanson, S.M., Kinghorn, A.D., 2006. Activity-guided isolation of cytotoxic constituents from the bark of Aglaia crassinervia collected in Indonesia. Bioorg. Med. Chem. 14, 960-972. https://doi. org/10.1016/j.bmc.2005.09.012.
  • Wang, B.G., Ebel, R., Nugroho, B.W., Prijono, D., Frank, W., Stteube, K.G., Hao, X.J., Proksch, P., 2001a. Aglacins A-D, first representatives of a new class of aryltetralin cyclic ether lignans from Aglaia cordata. J. Nat. Prod. 64, 1521-1526. https://doi. org/10.1021/np0102962.
  • Wang, S.K., Cheng, Y.J., Duh, C.Y., 2001b. Cytotoxic constituents from leaves of Aglaia elliptifolia. J. Nat. Prod. 64, 92-94.
  • Wang, B.G., Ebel, R., Wang, C.Y., Edrada, R.A., Wray, V., Proksch, P., 2004a. Aglacins IK, three methoxylated lignans from Aglaia cordata. J. Nat. Prod. 67, 682-684. https://doi.org/10.1021/np0340571.
  • Wang, B.G., Peng, H., Huang, H.L., Li, X.M., Eck, G., Gong, X., Proksch, P., 2004b. Rocaglamide, aglain, and other related derivatives from Aglaia testicuralis (Meliaceae). Biochem. Systemat. Ecol. 32, 1223-1226. https://doi.org/10.1016/j. bse.2004.05.005.
  • Weber, S., Puripattanavong, J., Brecht, V., Frahm, A.W., 2000. Phytochemical investigation of Aglaia rubiginosa. J. Nat. Prod. 63, 636-642. https://doi.org/ 10.1021/np9905923.
  • Wu, T.S., Liou, M.J., Kuoh, C.S., Teng, C.M., Nagao, T., Lee, K.H., 1997. Cytotoxic and antiplatelet aggregation priciples from Aglaia elliptifolia. J. Nat. Prod. 60, 606-608. https://doi.org/10.1021/np970163.
  • Xie, B.J., Yang, S.P., Chen, H.D., Yue, J.M., 2007. Agladupols A-E, triterpenoids from Aglaia duperreana. J. Nat. Prod. 70, 1532-1535. https://doi.org/10.1021/ np0702842.
  • Yang, S.M., Fu, W.W., Wang, D.X., Tan, C.H., Zhu, D.Y., 2008. Two new pregnane from Aglaia perviridis Hiern. J. Asian Nat. Prod. Res. 10 (5), 459-462. https://doi.org/ 10.1080/10286020801948367.
  • Yodsaoue, O., Sonprasit, J., Karalai, C., Ponglimanont, C., Tewtrakul, S., Chantrapromma, S., 2012. Diterpenoids and triterpenoids with potential anti-inflammatory activity from the leaves of Aglaia odorata. Phytochemistry 76, 83-91. https://doi.org/10.1016/j.phytochem.2012.01.015.
  • Zhang, H., Xu, H.H., Sonf, Z.J., Chen, L.Y., Wen, H.J., 2012. Molluscidal activity of Aglaia duperreana and the constituents of its twigs and leaves. Fitoterapia 83, 1081-1086. https://doi.org/10.1016/j.fitote.2012.05.003.
  • Zhang, F., Wang, J.S., Gu, Y.C., Kong, L.Y., 2010a. Triterpenoids from Aglaia abbreviata and their cytotoxic activities. J. Nat. Prod. 73, 2042-2046. https://doi.org/10.1021/ np100599g.
  • Zhang, L., Zhang, J.H., Yang, S.M., Tan, C.H., Luo, H.F., Zhu, D.Y., 2010b. Chemical constituents from the leaves of Aglaia perviridis. J. Asian Nat. Prod. Res. 12 (3), 215-219. https://doi.org/10.1080/100286020903565226.