Published May 31, 2021 | Version v1
Journal article Restricted

Comparison of glucosinolate diversity in the crucifer tribe Cardamineae and the remaining order Brassicales highlights repetitive evolutionary loss and gain of biosynthetic steps

  • 1. * & Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, 1871, Frederiksberg C, Denmark

Description

Agerbirk, Niels, Hansen, Cecilie Cetti, Kiefer, Christiane, Hauser, Thure P., Ørgaard, Marian, Lange, Conny Bruun Asmussen, Cipollini, Don, Koch, Marcus A. (2021): Comparison of glucosinolate diversity in the crucifer tribe Cardamineae and the remaining order Brassicales highlights repetitive evolutionary loss and gain of biosynthetic steps. Phytochemistry (112668) 185: 1-26, DOI: 10.1016/j.phytochem.2021.112668, URL: http://dx.doi.org/10.1016/j.phytochem.2021.112668

Files

Restricted

The record is publicly accessible, but files are restricted to users with access.

Linked records

Additional details

Identifiers

LSID
urn:lsid:plazi.org:pub:FFE91215FFE0FFB8FFB1A024FFDBD00C
URL
http://publication.plazi.org/id/FFE91215FFE0FFB8FFB1A024FFDBD00C

References

  • Byrne, S., Erthmann, P.O., Agerbirk, N., Bak, S., Hauser, T.P., Nagy, I., Paina, C., Asp, T., 2017. The genome sequence of Barbarea vulgaris facilitates the study of ecological biochemistry. Sci. Rep. 7, 40728. https://doi.org/10.1038/srep40728.
  • Cang, W., Sheng, Y.-X., Evivie, E.R., Kong, W.-W., Li, J., 2018. Lineage-specific evolution of flavin-containing monooxygenases involved in aliphatic glucosinolate side-chain modification. J. Systemat. Evol. 56, 92-104. https://doi.org/10.1111/jse.12289.
  • Cannell, N., Emms, D.M., Hetherington, A.J., MacKay, J., Kelly, S., Dolan, L., Sweetlove, L.J., 2020. Multiple metabolic innovations and losses are associated with major transitions in land plant evolution. Curr. Biol. 30, 1783-1800. https://doi. org/10.1016/j.cub.2020.02.086.
  • C´ardenas, P.D., Almeida, A., Bak, S., 2020. Evolution of structural diversity of terpenoids. Front. Plant Sci. 10, 1523. https://doi.org/10.3389/fpls.2019.01523.
  • Hammerbacher, A., Vasstao, D.G., 2020. The phytopathogenic fungus Sclerotina sclerotiorum detoxifies plant glucosinolate hydrolysis products via an isothiocyanate hydrolase. Nat. Commun. 11, 3090. https://doi.org/10.1038/s41467-020-16921-2.
  • Chhajed, S., Misra, B.B., Tello, N., Chen, S.X., 2019. Chemodiversity of the glucosinolate-myrosinase system at the single cell type resolution. Front. Plant Sci. 10, 618. https://doi.org/10.3389/fpls.2019.00618.
  • Chhajed, S., Mostafa, I., He, Y., Abou-Hashem, M., El-Domiaty, M., Chen, S., 2020. Glucosinolate biosynthesis and the glucosinolate-myrosinase system in plant defense. Agronomy 10, 1786. https://doi.org/10.3390/agronomy10111786.
  • Christensen, S., Heimes, C., Agerbirk, N., Kuzina, V., Olsen, C.E., Hauser, T.P., 2014. Different geographical distributions of two genotypes of Barbarea vulgaris that differ in resistance to insects and a pathogen. J. Chem. Ecol. 40, 491-501. https://doi.org/ 10.1007/s10886-014-0430-4.
  • Christensen, S., Sorensen, H., Munk, K.R., Hauser, T.P., 2016. A hybridisation barrier between two evolutionary lineages of Barbarea vulgaris (Brassicaceae) that differ in biotic resistances. Evol. Ecol. 30, 887-904. https://doi.org/10.1007/s10682-016- 9858-z.
  • Ciska, E., Horbovicz, M., Rogowska, M., Kosson, R., Drabinska ´, N., Honke, J., 2017. Evaluation of seasonal variations in the glucosinolate content in leaves and roots of four European horseradish (Armoracia rusticana) landraces. Pol. J. Food Nutr. Sci. 67, 301-308. https://doi.org/10.1515/pjfns-2016-0029.
  • Clausen, M., Kannangara, R., Olsen, C.E., Blomstedt, C.K., Gleadow, R.M., Jorgensen, K., Bak, S., Motawie, M.S., Moller, B.L., 2015. The bifurcation of the cyanogenic glucoside and glucosinolate biosynthetic pathways. Plant J. 84, 558-573. https:// doi.org/10.1111/tpj.13023.
  • Cole, R.A., 1976. Isothiocyanates, nitriles and thiocyanates as products of autolysis of glucosinolates in Cruciferae. Phytochemistry 15, 759-762. https://doi.org/10.1016/ S0031-9422(00)94437-6.
  • Cuong, D.M., Park, C.H., Bong, S.J., Kim, N.S., Kim, J.K., Park, S.U., 2019. Enhancement of glucosinolate production in watercress (Nasturtium officinale) hairy roots by overexpressing cabbage transcription factors. J. Agric. Food Chem. 67, 4860-4867. https://doi.org/10.1021/acs.jafc.9b00440.
  • Czerniawski, P., Piasecka, A., Bednarek, P., 2021. Evolutionary changes in the glucosinolate biosynthetic capacity in species representing Capsella, Camelina and Neslia genera. Phytochemistry 181, 112571. https://doi.org/10.1016/j. phytochem.2020.112571.
  • Daxenbichler, M.E., VanEtten, C.H., 1974. 5,5-Dimethyloxazolidine-2-thione formation from glucosinolate in Limnanthes alba Benth. seed. J. Am. Oil Chem. Soc. 51, 449-450. https://doi.org/10.1007/BF02635152.
  • Daxenbichler, M.E., Spencer, G.F., Carlson, D.G., Rose, G.B., Brinker, A.M., Powell, R.G., 1991. Glucosinolate composition of seeds from 297 species of wild plants. Phytochemistry 30, 2623-2638. https://doi.org/10.1016/0031-9422(91)85112-D.
  • Deki´c, M.S., Radulovic, N.S., Stojanovic, N.M., Randjelovic, P.J., Stojanovic-Radic, Z., Najman, S., Stojanovic, S., 2017. Spasmolytic, antimicrobial and cytotoxic activities of 5-phenylpentyl isothiocyanate, a new glucosinolate autolysis product from horseradish (Armoracia rusticana P. Gaertn., B. Mey. & Scherb., Brassicaceae). Food Chem. 232, 329-339. https://doi.org/10.1016/j.foodchem.2017.03.150.
  • Dunning, L.T., Christin, P.-A., 2020. Reticulate evolution, lateral gene transfer, and innovation in plants. Am. J. Bot. 107, 541-544. https://doi.org/10.1002/ajb2.1452.
  • Edger, P.P., Heidel-Fischer, H.M., Bekaert, M., Rota, J., Gloeckner, G., Platts, A.E., Heckel, D., Der, J.P., Wafula, E.K., Tang, M., Hofberger, J.A., Smithson, A., Hall, J.C., Blanchette, M., Bureau, T.E., Wright, S.I., dePamphilis, C.W., Schranz, M.E., Barker, M.S., Conant, G.C., Wahlberg, N., Vogel, H., Pires, J.C., Wheat, C.W., 2015. The butterfly plant arms-race escalated by gene and genome duplications. Proc. Natl. Acad. Sci. U.S.A. 112, 8362-8366. https://doi.org/10.1073/pnas.1503926112.
  • Edger, P.P., Hall, J.C., Harkess, A., Tang, M., Coombs, J., Mohammadin, S., Schranz, M. E., Xiong, Z., Leebens-Mack, J., Meyers, B.C., Sytsma, K.J., Koch, M.A., Al-Shehbaz, I. A., Pires, J.C., 2018. Brassicales phylogeny inferred from 72 plastid genes: a reanalysis of the phylogenetic localization of two paleopolyploid events and origin of novel chemical defenses. Am. J. Bot. 105, 463-469. https://doi.org/10.1002/ ajb2.1040.
  • Fahey, J.W., Zalcmann, A.T., Talalay, P., 2001. The chemical diversity and distribution of glucosinolates and isothiocyanates among plants. Phytochemistry 56, 5-51. https:// doi.org/10.1016/s0031-9422(00)00316-2.
  • Friedrichs, J., Schweiger, R., Geisler, S., Mix, A., Wittstock, U., Muller, C., 2020. Novel glucosinolate metabolism in larvae of the leaf beetle Phaedon cochleariae. Insect Biochem. Mol. Biol. 124, 103431. https://doi.org/10.1016/sj.ibmb.2020.103431.
  • Gan, X., Hay, A., Kwantes, M., Haberer, G., Hallab, A., Ioio, R.D., Hofhuis, H., Pieper, B., Cartolano, M., Neumann, U., Nikolov, L.A., Song, B., Hajheidari, M., Briskine, R., Kougioumoutzi, E., Vlad, D., Broholm, S., Hein, J., Meksem, K., Lightfoot, D., Shimizu, K.K., Shimizu-Inatsugi, R., Imprialou, M., Kudrna, D., Wing, R., Sato, S., Huijser, P., Filatov, D., Mayer, K.F.X., Mott, R., Tsiantis, M., 2016. The Cardamine hirsuta genome offers insight into the evolution of morphological diversity. Nature Plants 2, 16167. https://doi.org/10.1038/nplants.2016.167.
  • Gao, S.-S., Naowarojna, N., Cheng, R., Liu, X., Liu, P., 2018. Recent examples of α- ketoglutarate-dependent mononuclear non-haem iron enzymes in natural product biosyntheses. Nat. Prod. Rep. 35, 792-837. https://doi.org/10.1039/C7NP00067G.
  • Giallourou, N., Oruna-Concha, M.J., Harbourne, N., 2016. Effects of domestic processing methods on the phytochemical content of watercress (Nasturtium officinale). Food Chem. 212, 411-419. https://doi.org/10.1016/j.foodchem.2016.05.190.
  • Gmelin, R., Kjaer, A., Schuster, A., 1970. 2-Hydroxy-2-methylpropyl glucosinolate in Reseda alba. Phytochemistry 9, 599-600. https://doi.org/10.1016/S0031-9422(00) 85698-8.
  • Griffiths, D.W., Deighton, N., Birch, A.N.E., Patrian, B., Baur, R., St¨adler, E., 2001. Identification of glucosinolates on the leaf surface of plants from the Cruciferae and other closely related plants. Phytochemistry 57, 693-700. https://doi.org/10.1016/ s0031-9422(01)00138-8.
  • Grob Jr., K., Matile, P., 1980. Capillary GC of glucosinolate-derived horseradish constituents. Phytochemistry 19, 1789-1793. https://doi.org/10.1016/S0031-9422 (00)83814-5.
  • Halkier, B.A., Gershenzon, J., 2006. Biology and biochemistry of glucosinolates. Annu. Rev. Plant Biol. 57, 303-333. https://doi.org/10.1146/annurev. arplant.57.032905.105228.
  • Hanschen, F.S., Schreiner, M., 2017. Isothiocyanates, nitriles, and epithionitriles from glucosinolates are affected by genotype and developmental stage in Brassica oleracea varieties. Front. Plant Sci. 8, 1095. https://doi.org/10.1016/S0031-9422(00)83814-5.
  • Hansen, C.H., Du, L., Naur, P., Olsen, C.E., Axelsen, K.B., Hick, A.J., Pickett, J.A., Halkier, B.A., 2001. CYP83B1 is the oxime-metabolizing enzyme in the glucosinolate pathway in Arabidopsis. J. Biol. Chem. 276, 24790-24796. https://doi.org/10.1074/ jbc.M102637200.
  • Hansen, B.G., Kerwin, R.E., Ober, J.A., Lambrix, V.M., Mitchell-Olds, T., Gershenzon, J., Halkier, B.A., Kliebenstein, D.J., 2008. A novel 2-oxoacid-dependent dioxygenase involved in the formation of the goiterogenic 2-hydroxybut-3-enyl glucosinolate and generalist insect resistance in Arabidopsis. Plant Physiol. 148, 2096-2108. https:// doi.org/10.1104/pp.108.129981.
  • Hansen, C.C., Sorensen, M., Veiga, T.A.M., Zibrandtsen, J.F.S., Heskes, A.M., Olsen, C.E., Boughton, B.A., Moller, B.L., Neilson, E.H.J., 2018. Reconfigured cyanogenic glucoside biosynthesis in Eucalyptus cladocalyx involves a cytochrome P450 CYP706C55. Plant Physiol. (Wash. D C) 178, 1081-1095. https://doi.org/10.1104/ pp.18.00998.
  • Harun, S., Rehda, Abdullah-Zawawi, M.-R., Goh, H.-H., Mohamed-Hussein, Z.-A., 2020. A comprehensive gene inventory for glucosinolate biosynthetic pathway in Arabidopsis thaliana. J. Agric. Food Chem. 68, 7281-7297. https://doi.org/10.1104/ pp.18.00998.
  • Hay, A.S., Pieper, B., Cooke, E., Mand´akova, T., Cartolano, M., Tattersall, A.D., Ioio, R.D., McGowan, S.J., Barkoulas, M., Galinha, C., Rast, M.I., Hofhuis, H., Then, C., Plieske, J., Ganal, M., Mott, R., Martinez-Garcia, J.F., Carine, M.A., Scotland, R.W., Gan, X., Filatov, D.A., Lysak, M.A., Tsiantis, M., 2014. Cardamine hirsuta: a versatile genetic system for comparative studies. Plant J. 78, 1-15. https://doi.org/10.1111/ tpj.12447.
  • Heimes, C., Agerbirk, N., Sorensen, H., van M¨olken, T., Hauser, T.P., 2016. Ecotopic differentiation of two sympatric chemotypes of Barbarea vulgaris (Brassicaceae) with different biotic resistances. Plant Ecol. 217, 1055-1068. https://doi.org/10.1007/ s11258-016-0631-8.
  • Hofberger, J.A., Lyons, E., Edger, P.P., Pires, J.C., Schranz, M.E., 2013. Whole genome and tandem duplicate retention facilitated glucosinolate pathway diversification in the mustard family. Genome Biol. Evol. 5, 2155-2173. https://doi.org/10.1093/ gbe/evt162.
  • Hohmann, N., Wold, E., Lysak, M., Koch, M.A., 2015. A time-calibrated road map of Brassicaceae species radiation and evolutionary history. Plant Cell 27, 2770-2784. https://doi.org/10.1105/tpc.15.00482.
  • Huang, R., O' Donnell, A.J., Barboline, J.J., Barkman, T.J., 2016. Convergent evolution of caffeine in plants by co-option of exapted ancestral enzymes. Proc. Natl. Acad. Sci. U. S.A. 113, 10613-10618. https://doi.org/10.1073/pnas.1602575113.
  • Huang, X.C., German, D., Koch, M.A., 2020. Temporal patterns of diversification in Brassicaceae demonstrate decoupling of rate shifts and mesopolyploidization events. Ann. Bot. 125, 29-47. https://doi.org/10.1093/aob/mcz123.
  • Huelsenbeck, J.P., Ronquist, F., 2001. MRBAYES: Bayesian inference of phylogeny. Bioinformatics 17, 754-755. https://doi.org/10.1093/bioinformatics/17.8.754.
  • Humphrey, P.T., Gloss, A.D., Alexandre, N.M., Villalobos, M.M., Fremgen, M.R., Groen, S.C., Meihls, L.N., Jander, G., Whiteman, N.K., 2016. Aversion and attraction to harmful plant secondary compounds jointly shape the foraging ecology of a specialist herbivore. Ecol. Evol. 6, 3256-3268. https://doi.org/10.1002/ece3.2082.
  • Hussain, M., Gao, J., Bano, S., Wang, L., Lin, Y., Arthurs, S., Qasim, M., Mao, R., 2020. Diamondback moth larvae trigger host plant volatiles that lure its adult females for oviposition. Insects 11, 725. https://doi.org/10.3390/insects11110725.
  • Irmisch, S., McCormick, A.C., Boeckler, G.A., Schmidt, A., Reichelt, M., Schneider, B., Block, K., Schnitzler, J.P., Gershenzon, J., Unsicker, S.B., Kollner, T.G., 2013. Two herbivore-induced cutochrome P45o enzymes CYP79D6 and CYP79D7 catalyze the formation of volatile aldoximes involved in poplar defense. Plant Cell 25, 4737-4754. https://doi.org/10.1105/tpc.113.118265.
  • Jeon, J., Bong, S.J., Park, J.S., Park, Y.-K., Arasu, M.V., Al-Dhabi, N.A., Park, S.U., 2017. De novo transcriptome analysis and glucosinolate profiling in watercress (Nasturtium officinale R. Br.). BMC Genom. 18, 401. https://doi.org/10.1186/s12864-017-3792- 5.
  • Jeschke, V., Gershenzon, J., Vasstao, D.G., 2016. Insect detoxification of glucosinolates and their hydrolysis products. Adv. Bot. Res. 80, 199-245. https://doi.org/10.1016/ bs.abr.2016.06.003.
  • Jorgensen, M.E., Xu, D., Crocoll, C., Ramirez, D., Motawia, M.S., Olsen, C.E., Nour-Eldin, H.H., Halkier, B.A., 2017. Origin and evolution of transporter substrate specificity within the NPF family.
  • Kakizaki, T., Kitashiba, H., Zou, Z., Li, F., Fukino, N., Ohara, T., Nishio, T., Ishida, M., 2017. A 2-oxoglutarate-dependent dioxygenase mediates the biosynthesis of glucoraphasatin in radish. Plant Physiol. 173, 1583-1593. https://doi.org/10.1104/ pp.16.01814.
  • Kittipol, V., He, Z., Wang, L., Doheny-Adams, T., Langer, S., Bancroft, I., 2019. Genetic architecture of glucosinolate variation in Brassica napus. J. Plant Physiol. 240, 152988. https://doi.org/10.1016/j.jplph.2019.06.001.
  • Kjaer, A., Gmelin, R., 1958. Isothiocyanates XXXIII. An isothiocyanate glucoside (glucobarbarin) of Reseda lueteola L. Acta Chem. Scand. 12, 1693-1694. https://doi. org/10.3891/acta.chem.scand.12-1693.
  • Kjaer, A., Friis, P., 1962. Isothiocyanates XLIII. Isothiocyanates from Putranjiva roxburghii Wall. including (S)-2-methylbutyl isothiocyanate, a new mustard oil of natural derivation. Acta Chem. Scand. 16, 936-946. https://doi.org/10.3891/acta.chem. scand.16-0936.
  • Kjaer, A., Schuster, A., 1972. Glucosinolates in seeds of Arabis hirsuta (L.) Scop.: some new, naturally derived isothiocyanates. Acta Chem. Scand. 26, 8-14. https://doi. org/10.3891/acta.chem.scand.26-0008.
  • Kjaer, A., Schuster, A., 1973. ω- Methylthioalkylglucosinolates and some oxidized congeners in seeds of Erysimum rhaeticum. Phytochemistry 12, 929-933. https://doi. org/10.1016/0031-9422(73)80705-8.
  • Kjaer, A., Thomsen, H., 1962. Isothiocyanates XLII. Glucocleomin, a new natural glucoside, furnishing (-)-5-ethyl-5-methyl-2-oxazolidinethione on enzymic hydrolysis. Acta Chem. Scand. 16, 591-598. https://doi.org/10.3891/acta.chem. scand.16-0591.
  • Kliebenstein, D.J., D' Auria, J.C., Behere, A.S., Kim, J.H., Gunderson, K.L., Breen, J.N., Lee, G., Gershenzon, J., Last, R.L., Jander, G., 2007. Characterization of seed-specific benzoyloxyglucosinolate mutations in Arabidopsis thaliana. Plant J. 51, 1062-1076. https://doi.org/10.1111/j.1365-313X.2007.03205.x.
  • Kliebenstein, D.J., Cacho, N.I., 2016. Nonlinear selection and a blend of convergent, divergent and parallel evolution shapes natural variation in glucosinolates. Adv. Bot. Res. 80, 31-55. https://doi.org/10.1016/bs.abr.2016.06.002.
  • Klopsch, R., Witzel, K., Artemyeva, A., Ruppel, S., Hanschen, F., 2017. Genotypic variation of glucosinolates and their breakdown products in leaves of Brassica rapa. J. Agric. Food Chem. 66, 5481-5490. https://doi.org/10.1021/acs.jafc.8b01038.
  • Koch, M.A., German, D.A., Kiefer, M., Franzke, A., 2017. Database taxonomics as key to modern plant biology. Trends Plant Sci. 23, 4-6. https://doi.org/10.1016/j. tplants.2017.10.005.
  • Kozlov, A.M., Darriba, D., Flouri, T., Morel, B., Stamatakis, A., 2019. RAxML-NG: a fast, scalable, and user-friendly tool for maximum likelihood phylogenetic inference. Bioinformatics 35, 4453-4455. https://doi.org/10.1093/bioinformatics/btz305.
  • Kumar, R., Lee, S.G., Augustine, R., Reichelt, M., Vasstao, D.G., Palavalli, M.H., Allen, A., Gershenzon, J., Jez, J.M., Bisht, N.C., 2019. Molecular basis of the evolution of methylthioalkylmalate synthase and the diversity of methionine-derived glucosinolates. Plant Cell 31, 1633-1647. https://doi.org/10.1105/tpc.19.00046.
  • Lanfear, R., Frandsen, P.B., Wright, A.M., Senfeld, T., Calcott, B., 2017. PartitionFinder 2: new methods for selecting partitioned models of evolution for molecular and morphological phylogenetic analyses. Mol. Biol. Evol. 34, 772-773. https://doi.org/ 10.1093/mlbev/msw260.
  • Lee, J.G., Bonnema, G., Zhang, N., Kwak, J.H., de Vos, R.C.H., Beekwilder, J., 2013. Evaluation of glucosinolate variation in a collection of turnip (Brassica rapa) germplasm by the analysis of intact and desulfo glucosinolates. J. Agric. Food Chem. 61, 3984-3993. https://doi.org/10.1021/jf400890p.
  • Liang, X., Lee, H.W., Lu, Y., Zou, L., Ong, C.N., 2018. Simultaneous quantification of 22 glucosinolates in 12 Brassicaceae vegetables by hydrophilic interaction chromatography-tandem mass spectrometry. ACS Omega 3, 15546-15553. https:// doi.org/10.1021/acsomega.8b01668.
  • Lin, L.-Z., Sun, J., Chen, P., Zhang, R.-W., Fan, X.-E., Li, L.-W., Harnly, J.M., 2014. Profiling of glucosinolates and flavonoids in Rorippa indica (Linn.) hiern. (Cruciferae) by UHPLC-PDA-ESI/HRMS(n). J. Agric. Food Chem. 62, 6118-6129. https://doi. org/10.1021/jf405538d.
  • Linscheid, M., Wendisch, D., Strack, D., 1980. The structures of sinapic acid esters and their metabolism in cotyledons of Raphanus sativus. Z. Naturforsch. 35c, 907-914. https://doi.org/10.1515/znc-1980-11-1206.
  • Liu, T., Zhang, X., Yang, H., Agerbirk, N., Qiu, Y., Wang, H., Shen, D., Song, J., Li, X., 2016. Aromatic glucosinolate biosynthesis pathway in Barbarea vulgaris and its response to Plutella xylostella infestation. Front. Plant Sci. 7, 83. https://doi.org/ 10.3389/fpls.2016.00083.
  • Liu, T.-J., Zhang, Y.-J., Agerbirk, N., Wang, H.-P., Wei, X.-C., Song, J.-P., He, H.-J., Zhao, X.-Z., Zhang, X.-H., Li, X.-X., 2019. A high-density genetic map and QTL mapping of leaf traits and glucosinolates in Barbarea vulgaris. BMC Genom. 20, 371. https://doi.org/10.1186/s12864-019-5769-z.
  • Louda, S.M., Rodman, J.E., 1983. Ecological patterns in the glucosinolate content of a native mustard, Cardamine cordifolia, in the Rocky Mountains. J. Chem. Ecol. 9, 397-422. https://doi.org/10.1007/BF00988458.
  • Ludwig-Muller, J., Bennett, R.N., Garcia-Garrido, J.M., Pich´e, Y., Vierheilig, H., 2002. Reduced arbuscular mycorrhizal root colonization in Tropaeolum majus and Carica papaya after jasmonic acid application can not be attributed to incerased glucosinolate levels. J. Plant Physiol. 159, 517-523. https://doi.org/10.1078/0176- 1617-00731.
  • Maldini, M., Maksoud, S.A., Natella, F., Montoro, P., Petretto, G.L., Foddai, M., De Nicola, G.R., Chessa, M., Pintore, G., 2014. Moringa oleifera: a study of phenolics and glucosinolates by mass spectrometry. J. Mass Spectrom. 49, 900-910. https://doi. org/10.1002/jms.3437.
  • Malka, O., Easson, M.L.A.E., Paetz, C., G¨otz, M., Reichelt, M., Stein, B., Luck, K., Staniˇsi´c, A., Juravel, K., Santos-Garcia, D., Mondaca, L.L., Springate, S., Colvin, J., Winter, S., Gershenzon, J., Morin, S., Vasstao, D.G., 2020. Glucosylation prevents plant defense activation in phloem-feeding insects. Nat. Chem. Biol. 16, 1420-1426. https://doi.org/10.1038/s41589-020-00658-6.
  • Mandakov ´´a, T., Lysak, M.A., 2019. Healthy roots and leaves: comparative genome structure of horseradish and watercress. Plant Physiol. 179, 66-73. https://doi.org/ 10.1104/pp.18.01165.
  • Mandakov ´´a, T., Zozomov´a-Lihova, J., Kudoh, H., Zhao, Y., Lysak, M.A., Marhold, K., 2019. The story of promiscuous crucifers: origin and genome evolution of an invasive species, Cardamine occulta (Brassicaceae), and its relatives. Ann. Bot. 124, 209-220. https://doi.org/10.1093/aob/mcz019.
  • Marhold, K., Lihova, J., 2006. Polyploidy, hybridization and reticulate evolution: lessons from the Brassicaceae. Plant Systemat. Evol. 259, 143-174. https://doi.org/ 10.1007/s00606-006-0417-x.
  • Matth¨aus, B., Ozcan ¨, M., 2002. Glucosinolate composition of young shoots and flower buds of capers (Capparis species) growing wild in Turkey. J. Agric. Food Chem. 50, 7323-7325. https://doi.org/10.1021/jf020530+.
  • Melich´arkov´a, A., ˇSlenker, M., Zozomov´a-Lihov´a, J., Skokanov´a, K., ˇSingliarov´a, B., Kaˇcm´arov´a, T., Caboˇnov´a, M., Kempa, M., ˇSr´amkov´a, G., Mandakov ´a ´, T., Lys´ak, M. A., Svitok, M., M´artonfiov´a, L., Marhold, K., 2020. So closely related and yet so different: strong contrasts between the evolutionary histories of species of the Cardamine pratensis popyploid species complex in Central Europe. Front. Plant Sci. 11, 588856. https://doi.org/10.3389/fpls.2020.588856.
  • Mithen, R., Bennett, R., Marquez, J., 2010. Glucosinolate biochemical diversity and innovation in the Brassicales. Phytochemistry 71, 2074-2086. https://doi.org/ 10.1016/j.phytochem.2010.09.017.
  • Mittchell, A.J., Weng, J.-K., 2019. Unleashing the synthetic power of plant oxygenases: from mechanism to application. Plant Physiol. (Wash. D C) 179, 813-829. https:// doi.org/10.1104/pp.18.01223.
  • Montaut, S., Bleeker, R.S., Jacques, C., 2010. Phytochemical constituents of Cardamine diphylla. Can. J. Chem. 88, 50-55. https://doi.org/10.1139/V09-153.
  • Montaut, S., Zhang, W.-D., Nuzillard, J.-M., De Nicola, G.R., Rollin, P., 2015. Glucosinolate diversity in Bretschneidera sinensis of Chinese origin. J. Nat. Prod. 78, 2001-2006. https://doi.org/10.1021/acs.jnatprod.5b00338.
  • Montaut, S., De Nicola, G.R., Agnaniet, H., Issembe, Y., Rollin, P., Menut, C., 2017. Probing for the presence of glucosinolates in three Drypetes spp. (Drypetes euryodes (hiern) Hutch., Drypetes gossweileri S. Moore, Drypetes laciniata Hutch.) and two Rinorea spp. (Rinorea subintegrifolia O. Ktze and Rinorea woermanniana (Buttner) Engl.) from Gabon. Nat. Prod. Res. 31, 308-313. https://doi.org/10.1080/ 14786419.2016.1236099.
  • Montaut, S., Read, S., Blaˇzevic ´, I., Nuzillard, J.-M., Roje, M., Harakat, D., Rollin, P., 2020a. Investigation of the glucosinolates in Hesperis matronalis L. And Hesperis laciniata all.: Unveiling 4'-O-β -D-apiofuranosylglucomatrolin. Carbohydr. Res. 488, 107898. https://doi.org/10.1016/j.carres.2019.107898.
  • Montaut, S., Raharivelomanana, P., Butaud, J.-F., Lehartel, T., Rollin, P., 2020b. Glucosinolates of the only three Brassicales indigenous to French Polynesia. Nat. Prod. Res. 34, 2847-2851. https://doi.org/10.1080/14786419.2019.1591401.
  • Muller, C., Schulz, M., Pagnotta, E., Ugolini, L., Yang, T., Matthes, A., Lazzeri, L., Agerbirk, N., 2018. The role of the glucosinolate-myrosinase system in mediating greater resistance of Barbarea verna than B. vulgaris to Mamestra brassicae larvae. J. Chem. Ecol. 44, 1190-1205. https://doi.org/10.1007/s10886-018-1016-3.
  • Nelson, D., Werck-Reichhart, D., 2011. A P450-centric view of evolution. Plant J. 66, 194-211. https://doi.org/10.1111/j.1365-313X.2011.04529.x.
  • Nikolov, L.A., Shushkov, P., Nevado, B., Gan, X., Al-Shehbaz, I.A., Filatov, D., Bailey, C. D., Tsiantis, M., 2019. Resolving the backbone of the Brassicaceae phylogeny for investigating trait diversity. New Phytol. 222, 1638-1651. https://doi.org/10.1111/ nph.15732.
  • Novikova, P.Y., Hohmann, N., Nizhynska, V., Tsuchimatsu, T., Ali, J., Muir, G., Guggisberg, A., Paape, T., Schmid, K., Fedorenko, O.M., Holm, S., S¨all, T., Schl¨otterer, C., Marhold, K., Widmer, A., Sese, J., Shimizu, K.K., Weigel, D., Kr¨amer, U., Koch, M.A., Nordborg, M., 2016. Sequencing of the genus Arabidopsis identifies a complex history of non-bifurcating speciation and abundant transspecific polymorphism. Nat. Genet. 48, 1077-1082. https://doi.org/10.1038/ ng.3617.
  • Okamura, Y., Tsuzuki, N., Kuroda, S., Sato, A., Sawada, Y., Hirai, M.Y., Murakami, M., 2019. Interspecific differences in the larval performance of Pieris butterflies (Lepidoptera: pieridae) are associated with differences in the glucosinolate profiles of host plants. J. Insect Sci. 19, 1-9. https://doi.org/10.1093/jisesa/iez035.
  • Olsen, C.E., Huang, X.-C., Hansen, C.I.C., Cipollini, D., Orgaard, M., Matthes, A., Geu-Flores, F., Koch, M.A., Agerbirk, N., 2016. Glucosinolate diversity within a phylogenetic framework of the tribe Cardamineae (Brassicaceae) unraveled with HPLC-MS/MS and NMR-based analytical distinction of 70 desulfoglucosinolates. Phytochemistry 132, 33-56. https://doi.org/10.1016/j.phytochem.2016.09.013.
  • One Thousand Plant Trancriptomes Initiative, 2019. One thousand plant transcriptomes and the phylogenomics of green plants. Nature 574, 679-685. https://doi.org/ 10.1038/s41586-019-1693-2.
  • Padilla, G., Cartea, M.E., Velasco, P., de Haro, A., Ord´as, A., 2007. Variation of glucosinolates in vegetable crops of Brassica rapa. Phytochemistry 68, 536-545. https://doi.org/10.1016/j.phytochem.2006.11.017.
  • Pagnotta, E., Agerbirk, N., Olsen, C.E., Ugolini, L., Cinti, S., Lazzeri, L., 2017. Hydroxyl and methoxyl derivatives of benzylglucosinolate in Lepidium densiflorum with hydrolysis to isothiocyanates and non-isothiocyanate products: substitution governs product type and mass spectral fragmentation. J. Agric. Food Chem. 65, 3167-3178. https://doi.org/10.1021/acs.jafc.7b00529.
  • Pagnotta, E., Montaut, S., Matteo, R., Rollin, P., Nuzillard, J.M., Lazzeri, L., Bagatta, M., 2020. Glucosinolates in Reseda lutea L.: distribution in plant tissues during flowering time. Biochem. Systemat. Ecol. 90, 104043. https://doi.org/10.1016/j. bse.2020.104043.
  • Parpazian, S., Girdwood, T., Wessels, B.A., Poelman, E.H., Dicke, M., Moritz, T., Albrectsen, B.R., 2019. Leaf metabolic signatures induced by real or simulated herbivory in black mustard (Brassica nigra). Metabolomics 15, 130. https://doi.org/ 10.1007/s11306-019-1592-4.
  • Pedras, M.S.C., Yaya, E.E., 2013. Dissecting metabolic puzzles through isotope feeding: a novel amino acid in the biosynthetic pathway of the cruciferous phytoalexins rapalexin A and isocyalexin. A. Org. Biomol. Chem. 11, 1149-1166. https://doi.org/ 10.1039/C2OB27076E.
  • Pastorczyk, M., Bednarek, P., 2016. The function of glucosinolates and related metabolites in plant innate immunity. Adv. Bot. Res. 80, 171-198. https://doi.org/ 10.1016/bs.abr.2016.06.007.
  • Pedras, M.S.C., To, Q.H., Schatte, G., 2016. Divergent reactivity of an indole glucosinolate yields Lossen or Neber rearrangement products: the phytoalexin rapalexin A or a unique β- D-glucopyranose fused heterocycle. Chem. Commun. 52, 2505-2508. https://doi.org/10.1039/C5CC09822J.
  • Pellissier, L., Moreira, X., Danner, H., Serrano, M., Salamin, N., van Dam, N., Rasmann, S., 2016. The simultaneous inducibility of phytochemicals related to plant direct and indirect defences against herbivores is stronger at low elevation. J. Ecol. 104, 1116-1125. https://doi.org/10.1111/1365-2745.15580.
  • Petersen, B.L., Andr´easson, E., Bak, S., Agerbirk, N., Halkier, B.A., 2001. Characterization of transgenic Arabidopsis thaliana with metabolically engineered high levels of p - hydroxybenzylglucosinolate. Planta 212, 612-618. https://doi.org/10.1007/ s004250000429.
  • Petersen, A., Hansen, L.G., Mirza, N., Crocoll, C., Mirza, O., Halkier, B.A., 2019. Changing substrate specificity and iteration of amino acid chain elongation in glucosinolate biosynthesis through targeted mutagenesis of Arabidopsis methylthioalkylmalate synthase 1. Biosci. Rep. 39, BSR20190446 https://doi.org/ 10.1042/BSR20190446.
  • Pfalz, M., Mukhaimar, M., Perreau, F., Kirk, J., Hansen, C.I.C., Olsen, C.E., Agerbirk, N., Kroymann, J., 2016. Methyl transfer in glucosinolate biosynthesis mediated by indole glucosinolate O -methyltransferase 5. Plant Physiol. (Wash. D C) 172, 2190-2203. https://doi.org/10.1104/pp.16.01402.
  • Poczai, P., Hyv¨onen, J., 2010. Nuclear ribosomal spacer regions in plant phylogenetics: problems and prospects. Mol. Biol. Rep. 37, 1897-1912. https://doi.org/10.1007/ s11033-009-9630-3.
  • Prasad, K.V.S.K., Song, B.-H., Olson-manning, C., Anderson, J.T., Lee, C.-R., Schranz, M. E., Windsor, A.J., Clauss, M.J., Manzaneda, A.J., Naqvi, I., Reichelt, M., Gershenzon, J., Rupasinghe, S.G., Schuler, M.A., Mitchell-Olds, T., 2012. A gain-offunction polymorphism controlling complex traits and fitness in nature. Science 337, 1081-1084. https://doi.org/10.1126/science.1221636.
  • Rambaut, A., Drummond, A.J., Xie, D., Baele, G., Suchard, M.A., 2018. Posterior summarization in Bayesian phylogenetics using Tracer 1.7. Syst. Biol. 67, 901-904. https://doi.org/10.1093/sysbio/syy032.
  • Reichelt, M., Brown, P.D., Schneider, B., Oldham, N.J., Stauber, E., Tokuhisa, J., Kliebenstein, D.J., Mitchell-Olds, T., Gershenzon, J., 2002. Benzoic acid glucosinolate esters and other glucosinolates from Arabidopsis thaliana. Phytochemistry 59, 663-671. https://doi.org/10.1016/s0031-9422(02)00014-6.
  • Robin, A.H.K., Yi, G.-E., Laila, R., Yang, K., Park, J.-I., Kim, H.R., Nou, I.-S., 2016. Expression profiling of glucosinolate biosynthetic genes in Bra ssica oleracea L. v a r. cap itata in bred lines reveals their association with glucosinolate content. Molecules 21, 787. https://doi.org/10.3390/molecules21060787.
  • Rodman, J.E., Soltis, P.S., Soltis, D.E., Sytsma, K.J., Karol, K.G., 1998. Parallel evolution of glucosinolate biosynthesis inferred from congruent nuclear and plastid gene phylogenies. Am. J. Bot. 85, 997-1006. https://doi.org/10.2307/2446366.
  • Ronquist, F., Huelsenbeck, J.P., 2003. Mrbayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics 19, 1572-1574. https://doi.org/10.1093/ bioinformatics/btg180.
  • Rossiter, J.T., James, D.C., 1990. Biosynthesis of (R)-2-hydroxybut-3-enylglucosinolate (progoitrin) from [3,4- 3 H] but-3-enyIgIucosinoIate in Brassica napus. J. Chem. Soc. Perkin Trans. 1, 1909-1913. https://doi.org/10.1039/P19900001909.
  • Sang, J.P., Minchinton, I.R., Johnstone, P.K., Truscott, R.J.W., 1984. Glucosinolate profiles in the seed, root and leaf tissue of cabbage, mustard, rapeseed, radish and swede. Can. J. Plant Sci. 64, 77-93. https://doi.org/10.1007/10.1007/ BF00988082.
  • Schranz, M.E., Manzaneda, A.J., Windsor, A.J., Clauss, M.J., Mitchell-Olds, T., 2009. Ecological genomics of Boechera stricta: identification of a QTL controlling the allocation of methionine- vs branched-chain amino acid-derived glucosinolates and levels of insect herbivory. Heredity 102, 465-474. https://doi.org/10.1038/hdy.2009.12.
  • Sugiyama, R., Hirai, M.Y., 2019. Atypical myrosinase as a mediator of glucosinolate functions in plants. Front. Plant Sci. 10, 1008. https://doi.org/10.3389/ fpls.2019.01008.