Published October 31, 2021 | Version v1
Journal article Restricted

Cuticular wax composition contributes to different strategies of foliar water uptake in six plant species from foggy rupestrian grassland in tropical mountains

Description

Boanares, Daniela, Bueno, Amauri, Souza, Aline Xavier de, Kozovits, Alessandra Rodrigues, Sousa, Hildeberto Caldas, Pimenta, Lúcia Pinheiro Santos, Isaias, Rosy Mary dos Santos, França, Marcel Giovanni Costa (2021): Cuticular wax composition contributes to different strategies of foliar water uptake in six plant species from foggy rupestrian grassland in tropical mountains. Phytochemistry (112894) 190: 1-8, DOI: 10.1016/j.phytochem.2021.112894, URL: http://dx.doi.org/10.1016/j.phytochem.2021.112894

Files

Restricted

The record is publicly accessible, but files are restricted to users with access.

Linked records

Additional details

Identifiers

LSID
urn:lsid:plazi.org:pub:FFACFFDB170DEC1FFFD1FFAAFFA1FFC5

References

  • Barthlott, W., Neinhuis, C., Cutler, D., Ditsch, F., Meusel, I., Theise, I., Wilhelmi, H., 1998. Classification and terminology of plant epicuticular waxes. Botanical J. Linnean Sock 126, 237-260. https://doi.org/10.1111/j.1095-8339.1998.tb02529.x.
  • Berry, Z.C., White, J.C., Smith, W.K., 2014. Foliar uptake, carbon fluxes and water status are affected by the timing of daily fog in saplings from a threatened cloud forest. Tree Physiol. 34, 459-470. https://doi.org/10.1093/treephys/tpu032.
  • Berry, Z.C., Emery, N.C., Gotsch, S.G., Goldsmith, G.R., 2019. Foliar water uptake: processes, pathways, and integration into plant water budgets. Plant Cell Environ. 42, 410-423. https://doi.org/10.1111/pce.13439.
  • Boanares, D., Isaias, R.M.S., Sousa, H.C., Kozovits, A.R., 2018a. Strategies of leaf water uptake based on anatomical traits. Plant Biol. 20, 848-856. https://doi.org/ 10.1111/plb.12832.
  • Boanares, D., Ferreira, B.G., Kozovits, A.R., Sousa, H.C., Isaias, R.M.S., Franca, M.G.C., 2018b. Pectin and cellulose cell wall composition enables different strategies to leaf water uptake in plants from tropical fog mountain. Plant Physiol. Biochem. 122, 57-64.
  • Boanares, D., Kozovits, A.R., Lemos-Filho, J.P., Isaias, R.M.S., Solar, R.R.C., Duarte, A.A., Franca, M.G.C., 2019. Foliar water-uptake strategies are related to leaf water status and gas exchange in plants from a ferruginous rupestrian field. Am. J. Bot. 106, 935-942. https://doi.org/10.1002/ajb2.1322.
  • Boanares, D., Oliveira, R.S., Isaias, R.M.S., Franca, M.G.C., Penuelas t, J., 2020. The neglected reverse water pathway: atmosphere-plant-soil continuum. Trends Plant Sci. 25, 1073-1075. https://doi.org/10.1016/j.tplants.2020.07.012.
  • Breshears, D.D., McDowell, N.G., Goddard, K.L., Dayem, K.E., Martens, S.N., Meyer, C. W., 2008. Foliar absorption of intercepted rainfall improves woody plant water status most during drought. Ecology 89, 41-47. https://doi.org/10.1890/07-0437.1.
  • Brinks, O., Mencuccini, M., Rowland, L., da Costa, A.C.L., de Carvalho, C.J.R., Bittencourt, P., Meir, P., 2019. Foliar water uptake in Amazonian trees: evidence and consequences. Global Change Biol. https://doi.org/10.1111/gcb.14666.
  • Bueno, A.B., 2018. Ecophysiological Adaptations of Cuticular Water Permeability of Plants to Hot Arid Biomes. PhD thesis. Julius-Maximilians-University, Wurzburg, Germany.
  • Burghardt, M., Riederer, M., 2019a. Cuticular wax coverage and its transpiration barrier properties in Quercus coccifera L. leaves: does the environment matter? Tree Physiol. 40, 827-840. https://doi.org/10.1093/treephys/tpz110.
  • Bueno, A., Alfarhan, A., Arand, K., Burghardt, M., Deininger, A.C., Hedrich, R., Leide, J., Seufert, P., Staiger, S., Riederer, M., 2019b. Temperature effects on the cuticular transpiration barrier of two desert plants with water-spender and water-saver life strategies. J. Exp. Bot. 70, 1613-1625. https://doi.org/10.1093/jxb/erz018.
  • Burgess, S.S.O., Dawson, T.E., 2004. The contribution of fog to the water relations of Sequoia sempervirens (D. Don): foliar uptake and prevention of dehydration. Plant Cell Environ. 27, 1023-1034. https://doi.org/10.1111/j.1365-3040.2004.01207.x.
  • Burkhardt, J., Basi, S., Pariyar, S., Hunsche, M., 2012. Stomatal penetration by aqueous solutions - an update involving leaf surface particles. New Phytol. 196, 774-787. https://doi.org/10.1111/j.1469-8137.2012.04307.x.
  • Diarte, C., de Souza, A.X., Staiger, S., Deininger, A., Bueno, A., Burghardt, M., Graell, J., Riederer, M., Lara, I., Leide, J., 2020. Compositional, structural and functional cuticle analysis of Prunus laurocerasus L. sheds light on cuticular barrier plasticity. Plant Physiol. Biochem. 158, 434-445. https://doi.org/10.1016/j. plaphy.2020.11.028.
  • Eller, C.B., Lima, A.L., Oliveira, R.S., 2016. Cloud forest trees with higher foliar water uptake capacity and anisohydric behavior are more vulnerable to drought and climate change. New Phytol. 211, 489-501. https://doi.org/10.1111/nph.13952.
  • Fern´andez, V., Khayet, M., 2015. Evaluation of the surface free energy of plant surfaces: toward standardizing the procedure. Front. Plant Sci. 6, 510. https://doi.org/ 10.3389/fpls.2015.00510.
  • Fern´andez, V., Guzm´an-Delgado, P., Graca, J., Santos, S., Gil, L., 2016. Cuticle structure in relation to chemical composition: Re-assessing the prevailing model. Front. Plant Sci. 7, 427. https://doi.org/10.3389/fpls.2016.00427.
  • Fernandez, V., Bahamonde, H.A., Peguero-Pina, J.J., Gil-Pelegrin, E., Sancho-Knapik, D., Gil, L., Goldbach, H.E., Eichert, T., 2017. Physico-chemical properties of plant cuticles and their functional and ecological significance. J. Exp. Bot. 68, 5293-5306. https://doi.org/10.1093/jxb/erx302.
  • Fern´andez, V., Gil-Pelegrin, E., Eichert, T., 2021. Foliar water and solute absorption: an update. Plant J. 105, 870-883. https://doi.org/10.1111/tpj.15090.
  • Goldsmith, G.R., 2013. Changing directions: the atmosphere - plant - soil continuum. New Phytol. 199, 4-6. https://doi.org/10.1111/nph.12332.
  • Goldsmith, G.R., Lehmann, M.M., Cernusak, L.A., Arend, M., Siegwolf, R.T.W., 2017. Inferring foliar water uptake using stable isotopes of water. Oecologia 184, 763-766. https://doi.org/10.1007/s00442-017-3917-1.
  • Guzman-Delgado ´, P., Graca, J., Cabral, V., Gil, L., Fernandez ´, V., 2016. The presence of cutan limits the interpretation of cuticular chemistry and structure: Ficus elastica leaf as an example. Physiol. Plantarum 157 (2), 205-220. https://doi.org/10.1111/ ppl.12414.
  • Guzman-Delgado ´, P., Fernandez ´, V., Venturas, M., Rodriguez-Calcerrada, J., Gil, L., 2017. Surface properties and physiology of Ulmus laevis and U. minor samaras: implications for seed development and dispersal. Tree Physiol. 37 (6), 815-826. https://doi.org/10.1093/treephys/tpx022.
  • Guzm´an-Delgado, P., Laca, E., Zwieniecki, M., 2020. Unraveling foliar water uptake pathways: the contribution of stomata and the cuticle. Authorea. https://doi.org/ 10.22541/au.159708705.55227474. August 10.
  • Hopper, S.D., 2009. OCBIL theory: towards an integrated understanding of the evolution, ecology and conservation of biodiversity on old, climatically buffered, infertile landscapes. Plant Soil 322, 49-86. https://doi.org/10.1007/s11104-009-0068-0.
  • Jeffree, C.E., 2006. The fine structure of the plant cuticle. In: Riederer, M., Muller, C. (Eds.), Biology of the Plant Cuticle, Annual Plant Reviews, vol. 23. Blackwell Publishing), Oxford, pp. 11-125.
  • Jenks, M.A., Ashworth, E.N., 1999. Plant epicuticular waxes: function, production, and genetics. Hortic. Rev. 23, 1-68. https://doi.org/10.1002/9780470650752.ch1.
  • Jetter, R., Kunst, L., Samuels, A.L., 2006. Composition of plant cuticular waxes. In: Riederer, M., Muller, C. (Eds.), In Biology of the Plant Cuticle, Annual Plant Reviews, vol. 23. Blackwell Publishing, Oxford, pp. 145-181.
  • Karnovsky, M.J., 1965. A formaldehyde-glutaraldehyde fixative of high osmolality for use in electron microscopy. J. Cell Biol. 27, 137-138.
  • Ketel, D.H., Dirkse, W.G., Ringoet, A., 1972. Water uptake from foliar-applied drops and its further distribution in the oat leaf. Acta Bot. Neerl. 21, 155-166.
  • Koch, K., Ensikat, H.J., 2008. The hydrophobic coatings of plant surfaces: epicuticular wax crystals and their morphologies, crystallinity and molecular self-assembly. Micron 39, 759-772. https://doi.org/10.1016/j.micron.2007.11.010.
  • Koch, K., Dommisse, A., Barthlott, W., 2006. Chemistry and crystal growth of plant wax tubules of Lotus (Nelumbo nucifera) and Nasturtium (Tropaeolum majus) leaves on technical substrates. Cryst. Growth Des. 11, 2571-2578. https://doi.org/10.1021/ cg060035w.
  • Lara, I., Heredia, A., Dominguez, E., 2019. Shelf life potential and the fruit cuticle: the unexpected player. Front. Plant Sci. 10, 770. https://doi.org/10.3389/ fpls.2019.00770.
  • Liang, X., Su, D., Yin, S., Wang, Z., 2009. Leaf water absorption and desorption functions for three turfgrasses. J. Hydrol. 376, 243-248. https://doi.org/10.1016/j. jhydrol.2009.07.035.
  • Limm, E.B., Dawson, T.E., 2010. Polystichum munitum (Dryopteridaceae) varies geographically in its capacity to absorb fog water by foliar uptake within the redwood forest ecosystem. Am. J. Bot. 97, 1121-1128. https://doi.org/10.3732/ajb. l000081.
  • Limm, E.B., Simonin, K.A., Bothman, A.G., Dawson, T.E., 2009. Foliar water uptake: a common water acquisition strategy for plants of the redwood forest. Oecologia 161, 449-459. https://doi.org/10.1007/s00442-009-1400-3.
  • Martin, C.E., von Willert, D.J., 2000. Leaf epidermal hydathodes and the ecophysiological consequences of foliar water uptake in species of Crassula from the Namib Desert in Southern Africa. Plant Biol. 2, 229-242. https://doi.org/10.1055/s- 2000-9163.
  • Mayr, S., Schmid, P., Laur, J., Rosner, S., Charra-Vaskou, K., D¨amon, B., Hacke, U.G., 2014. Uptake of water via branches helps timberline conifers refill sembolised xylem in late winter. Plant Physiol. 164, 1731-1740.
  • McCune, B., Grace, J.B., 2002. Analysis of Ecological Communities. MjM Software Design, Gleneden Beach, Oregon.
  • Neinhuis, C., Barthlott, W., 1997. Characterization and distribution of water - repellent, self -cleaning plant surfaces. Ann. Bot 79 (6), 667-677.
  • Nguyen, H.T., Meir, P., Wolfe, J., Mencuccini, M., Ball, M.C.C., 2016. Plumbing the depths: extracellular water storage in sspecialised leaf structures and its functional expression in a three-domain pressure-volume relationship. Plant Cell Environ. 40, 1021-1038. https://doi.org/10.1111/pce.12788.
  • Oksanen, J., Blanchet, F.G., Kindt, R., Legendre, P., Minchin, P.R., O' Hara, R.B., Simpson, G.L., Solymos, P., Stevens, M.H.H., Wagner, H., 2016. Vegan: community ecology package. R package version 2.0-3. Available at: http://CRAN.R-project. org/package=vegan.
  • Philippe, G., Sorensen, I., Jiao, C., Sun, X., Fei, Z., Domozych, D.S., Rose, J.K., 2020. Cutin and suberin: assembly and origins of specialized lipidic cell wall scaffolds. Curr. Opin. Plant Biol. 55, 11-20.
  • Poynter, J., Eglinton, G., 1990. 14. Molecular composition of three sediments from hole 717c: the Bengal fan. In Proceedings of the Ocean Drilling Program. Scientific Results, College Station, TX.
  • R Core Team, 2018. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria.
  • Reynhardt, E.C., 1997. The role of hydrogen bonding in the cuticular wax of Hordeum vulgare L. Eur. Biophys. J. 26, 195-201. https://doi.org/10.1007/s002490050071.
  • Riederer, M., Schneider, G., 1990. The effect of the environment on the permeability and composition of Citrus leaf cuticles II. Composition of soluble cuticular lipids and correlation with transport properties. Planta 180, 15.
  • Riederer, M., Schreiber, L., 2001. Protecting against water loss: analysis of the barrier properties of plant cuticles. J. Exp. Bot. 52, 2023-2032. https://doi.org/10.1093/ jexbot/52.363.2023.
  • Schreel, J.D.M., Steppe, K., 2020. Foliar water uptake in trees: negligible or necessary? Trends Plant Sci. 25, 590-603. https://doi.org/10.1016/j.tplants.2020.01.003.
  • Schreel, J.D.M., Leroux, O., Goossens, W., Brodersen, C., Rubisnstein, A., Steppe, K., 2020. Identifying the major pathways for foliar water uptake in beech (Fagus sylvatica L.): a major role for trichomes. Plant J. 103, 769-780. https://doi.org/ 10.1111/tpj.14770.
  • Schuster, A.C., Burghardt, M., Alfarhan, A., Bueno, A., Hedrich, R., Leide, J., Thomas, J., Riederer, M., 2016. Effectiveness of cuticular transpiration barriers in a desert plant at controlling water loss at high temperatures. AoB Plants 8, plw027. https://doi. org/10.1093/aobpla/plw027.
  • Silveira, F.A.O., Negreiros, D., Barbosa, N.P.U., Buisson, E., Carmo, F.F., Carstensen, D. W., et al., 2016. Ecology and evolution of plant diversity in the endangered campo rupestre: a neglected conservation priority. Plant Soil 403, 129-152. https://doi. org/10.1007/s11104-015-2637-8.
  • Staiger, S., Seufert, P., Arand, K., Burghardt, M., Popp, C., Riederer, M., 2019. The permeation barrier of plant cuticles: uptake of active ingredients is limited by very long-chain aliphatic rather than cyclic wax compounds. Pest Manag. Sci. 75, 3405-3412. https://doi.org/10.1002/ps.5589.
  • Valim, E.A.R., Nalini, H.A.A., Kozovits, A.R., 2013. Litterfall dynamics in an iron-rich rock outcrop complex in the southeastern portion of the Iron Quadrangle of Brazil. Acta Bot. Bras. 27, 286-293. https://doi.org/10.1590/S0102-33062013000200005.
  • Wagner, P., Furstner, R., Barthlott, W., Neinhuis, C., 2003. Quantitative assessment to the structural basis of water repellency in natural and technical surfaces. J. Exp. Bot. 54, 1295-1303. https://doi.org/10.1093/jxb/erg127.
  • Yeats, T.H., Rose, J.K., 2013. The formation and function of plant cuticles. Plant Physiol. 163, 5-20. https://doi.org/10.1104/pp.113.222737.