Published October 31, 2021
| Version v1
Journal article
Restricted
Cytochrome P450 catalyses the 29-carboxyl group formation of celastrol
Creators
- 1. * & Beijing Shijitan Hospital, Capital Medical University, Beijing, 100038, China & College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, China & * & School of Traditional Chinese Medicine, Capital Medical University, Beijing, 100069, China
Description
Zhou, Jiawei, Hu, Tianyuan, Liu, Yuan, Tu, Lichan, Song, Yadi, Lu, Yun, Zhang, Yifeng, Tong, Yuru, Zhao, Yujun, Su, Ping, Wu, Xiaoyi, Huang, Luqi, Gao, Wei (2021): Cytochrome P450 catalyses the 29-carboxyl group formation of celastrol. Phytochemistry (112868) 190: 1-10, DOI: 10.1016/j.phytochem.2021.112868, URL: http://dx.doi.org/10.1016/j.phytochem.2021.112868
Files
Linked records
Additional details
Identifiers
- URL
- https://www.checklistbank.org/dataset/53911
- LSID
- urn:lsid:plazi.org:pub:FFCCFFCCFC0CC8241540FFB5FFCDFFF3
- URL
- http://publication.plazi.org/id/FFCCFFCCFC0CC8241540FFB5FFCDFFF3
References
- Biazzi, E., Carelli, M., Tava, A., Abbruscato, P., Losini, I., Avato, P., Scotti, C., Calderini, O., 2015. CYP72A67 catalyzes a key oxidative step in Medicago truncatula hemolytic saponin biosynthesis. Mol. Plant 8, 1493-1506. https://doi.org/10.1016/ j.molp.2015.06.003.
- Pollier, J., 2019. CYP712K4 catalyzes the C-29 oxidation of friedelin in the Maytenus ilicifolia quinone methide triterpenoid biosynthesis pathway. Plant Cell Physiol. 60, 2510-2522. https://doi.org/10.1093/pcp/pcz144.
- Caputi, L., Franke, J., Farrow, S.C., Chung, K., Payne, R.M.E., Nguyen, T.D., Dang, T.T., Soares Teto Carqueijeiro, I., Koudounas, K., Duge de Bernonville, T., Ameyaw, B., Jones, D.M., Vieira, I.J.C., Courdavault, V., O' Connor, S.E., 2018. Missing enzymes in the biosynthesis of the anticancer drug vinblastine in Madagascar periwinkle. Science (New York, N.Y.) 360, 1235-1239. https://doi.org/10.1126/science. aat4100.
- Carelli, M., Biazzi, E., Panara, F., Tava, A., Scaramelli, L., Porceddu, A., Graham, N., Odoardi, M., Piano, E., Arcioni, S., May, S., Scotti, C., Calderini, O., 2011. Medicago truncatula CYP716A12 is a multifunctional oxidase involved in the biosynthesis of hemolytic saponins. Plant Cell 23, 3070-3081. https://doi.org/10.1105/ tpc.111.087312.
- Corson, T.W., Crews, C.M., 2007. Molecular understanding and modern application of traditional medicines: triumphs and trials. Cell 130, 769-774. https://doi.org/ 10.1016/j.cell.2007.08.021.
- Dai, Z., Liu, Y., Sun, Z., Wang, D., Qu, G., Ma, X., Fan, F., Zhang, L., Li, S., Zhang, X., 2019. Identification of a novel cytochrome P450 enzyme that catalyzes the C-2alpha hydroxylation of pentacyclic triterpenoids and its application in yeast cell factories. Metab. Eng. 51, 70-78. https://doi.org/10.1016/j.ymben.2018.10.001.
- Feng, X., Guan, D., Auen, T., Choi, J.W., Salazar Hernandez, M.A., Lee, J., Chun, H., Faruk, F., Kaplun, E., Herbert, Z., Copps, K.D., Ozcan, U., 2019. IL1R1 is required for celastrol' s leptin-sensitization and antiobesity effects. Nat. Med. 25, 575-582. https://doi.org/10.1038/s41591-019-0358-x.
- Fukushima, E.O., Seki, H., Ohyama, K., Ono, E., Umemoto, N., Mizutani, M., Saito, K., Muranaka, T., 2011. CYP716A subfamily members are multifunctional oxidases in triterpenoid biosynthesis. Plant Cell Physiol. 52, 2050-2061. https://doi.org/ 10.1093/pcp/pcr146.
- Fukushima, E.O., Seki, H., Sawai, S., Suzuki, M., Ohyama, K., Saito, K., Muranaka, T., 2013. Combinatorial biosynthesis of legume natural and rare triterpenoids in engineered yeast. Plant Cell Physiol. 54, 740-749. https://doi.org/10.1093/pcp/ pct015.
- Galanie, S., Thodey, K., Trenchard, I.J., Filsinger Interrante, M., Smolke, C.D., 2015. Complete biosynthesis of opioids in yeast. Science (New York, N.Y.) 349, 1095-1100. https://doi.org/10.1126/science.aac9373.
- Han, J.Y., Ahn, C.H., Adhikari, P.B., Kondeti, S., Choi, Y.E., 2019. Functional characterization of an oxidosqualene cyclase (PdFRS) encoding a monofunctional friedelin synthase in Populus davidiana. Planta 249, 95-111. https://doi.org/ 10.1007/s00425-018-2985-8.
- Hansen, N.L., Miettinen, K., Zhao, Y., Ignea, C., Andreadelli, A., Raadam, M.H., Makris, A.M., Moller, B.L., Staerk, D., Bak, S., Kampranis, S.C., 2020. Integrating pathway elucidation with yeast engineering to produce polpunonic acid the precursor of the anti-obesity agent celastrol. Microb. Cell Factories 19, 15. https:// doi.org/10.1186/s12934-020-1284-9.
- Huang, L., Li, J., Ye, H., Li, C., Wang, H., Liu, B., Zhang, Y., 2012. Molecular characterization of the pentacyclic triterpenoid biosynthetic pathway in Catharanthus roseus. Planta 236, 1571-1581. https://doi.org/10.1007/s00425-012- 1712-0.
- Krokida, A., Delis, C., Geisler, K., Garagounis, C., Tsikou, D., Pena-Rodriguez t, L.M., Katsarou, D., Field, B., Osbourn, A.E., Papadopoulou, K.K., 2013. A metabolic gene cluster in Lotus japonicus discloses novel enzyme functions and products in triterpene biosynthesis. New Phytol. 200, 675-690. https://doi.org/10.1111/nph.12414.
- Kupchan, S.M., Schubert, R.M., 1974. Selective alkylation: a biomimetic reaction of the antileukemic triptolides? Science (New York, N.Y.) 185, 791-793. https://doi.org/ 10.1126/science.185.4153.791.
- Lange, B.M., Rujan, T., Martin, W., Croteau, R., 2000. Isoprenoid biosynthesis: the evolution of two ancient and distinct pathways across genomes. Proc. Natl. Acad. Sci. U. S. A 97, 13172-13177. https://doi.org/10.1073/pnas.240454797.
- Lau, W., Sattely, E.S., 2015. Six enzymes from mayapple that complete the biosynthetic pathway to the etoposide aglycone. Science (New York, N.Y.) 349, 1224-1228. https://doi.org/10.1126/science.aac7202.
- Lin, Y., Peng, N., Li, J., Zhuang, H., Hua, Z.C., 2013. Herbal compound triptolide synergistically enhanced antitumor activity of amino-terminal fragment of urokinase. Mol. Canc. 12, 54. https://doi.org/10.1186/1476-4598-12-54.
- Liu, J., Lee, J., Salazar Hernandez, M.A., Mazitschek, R., Ozcan, U., 2015. Treatment of obesity with celastrol. Cell 161, 999-1011. https://doi.org/10.1016/j. cell.2015.05.011.
- Liu, Y., Zhao, Y., Su, P., Zhang, M., Tong, Y., Hu, T., Huang, L., Gao, W., 2016. The MVA pathway genes expressions and accumulation ofcelastrol in Tripterygium wilfordii suspension cells in responseto methyl jasmonate treatment. J. Asian Nat. Prod. Res. 18, 619-628. https://doi.org/10.1080/10286020.2015.1134504.
- Livak, K.J., Schmittgen, T.D., 2001. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods (San Diego, Calif.) 25, 402-408. https://doi.org/10.1006/meth.2001.1262.
- Luo, X., Reiter, M.A., d' Espaux, L., Wong, J., Denby, C.M., Lechner, A., Zhang, Y., Grzybowski, A.T., Harth, S., Lin, W., Lee, H., Yu, C., Shin, J., Deng, K., Benites, V.T., Wang, G., Baidoo, E.E.K., Chen, Y., Dev, I., Petzold, C.J., Keasling, J.D., 2019. Complete biosynthesis of cannabinoids and their unnatural analogues in yeast. Nature 567, 123-126. https://doi.org/10.1038/s41586-019-0978-9.
- Ma, X., Xu, L., Alberobello, A.T., Gavrilova, O., Bagattin, A., Skarulis, M., Liu, J., Finkel, T., Mueller, E., 2015. Celastrol protects against obesity and metabolic dysfunction through activation of a HSF1-PGC1alpha transcriptional Axis. Cell Metabol. 22, 695-708. https://doi.org/10.1016/j.cmet.2015.08.005.
- Marcus, D.M., 2014. Comparison of Tripterygium wilfordii Hook F with methotrexate in the treatment of rheumatoid arthritis. Ann. Rheum. Dis. 73, e56. https://doi.org/ 10.1136/annrheumdis-2014-205971.
- Miao, G.P., Li, W., Zhang, B., Zhang, Z.F., Ma, Z.Q., Feng, J.T., Zhang, X., Zhu, C.S., 2015. Identification of genes involved in the biosynthesis of Tripterygium wilfordii Hook.f. Secondary metabolites by suppression subtractive hybridization. Plant Mol. Biol. Rep. 33, 756-769. https://doi.org/10.1007/s11105-014-0792-3.
- Miettinen, K., Pollier, J., Buyst, D., Arendt, P., Csuk, R., Sommerwerk, S., Moses, T., Mertens, J., Sonawane, P.D., Pauwels, L., Aharoni, A., Martins, J., Nelson, D.R., Goossens, A., 2017. The ancient CYP716 family is a major contributor to the diversification of eudicot triterpenoid biosynthesis. Nat. Commun. 8, 14153. https:// doi.org/10.1038/ncomms14153.
- Mu, T.W., Ong, D.S., Wang, Y.J., Balch, W.E., Yates 3rd, J.R., Segatori, L., Kelly, J.W., 2008. Chemical and biological approaches synergize to ameliorate protein-folding diseases. Cell 134, 769-781. https://doi.org/10.1016/j.cell.2008.06.037.
- Mujumdar, N., Mackenzie, T.N., Dudeja, V., Chugh, R., Antonoff, M.B., Borja-Cacho, D., Sangwan, V., Dawra, R., Vickers, S.M., Saluja, A.K., 2010. Triptolide induces cell death in pancreatic cancer cells by apoptotic and autophagic pathways. Gastroenterology 139, 598-608. https://doi.org/10.1053/j.gastro.2010.04.046.
- Hepp, M., Horning, T., Iqbal, T., Jiang, H., Kizer, L., Lieu, B., Melis, D., Moss, N., Regentin, R., Secrest, S., Tsuruta, H., Vazquez, R., Westblade, L.F., Xu, L., Yu, M., Zhang, Y., Zhao, L., Lievense, J., Covello, P.S., Keasling, J.D., Reiling, K.K., Renninger, N.S., Newman, J.D., 2013. High-level semi-synthetic production of the potent antimalarial artemisinin. Nature 496, 528-532. https://doi.org/10.1038/ nature12051.
- Saeed, A.I., Bhagabati, N.K., Braisted, J.C., Liang, W., Sharov, V., Howe, E.A., Li, J., Thiagarajan, M., White, J.A., Quackenbush, J., 2006. TM4 microarray software suite. Methods Enzymol. 411, 134-193. https://doi.org/10.1016/s0076-6879(06)11009- 5.
- Seki, H., Sawai, S., Ohyama, K., Mizutani, M., Ohnishi, T., Sudo, H., Fukushima, E.O., Akashi, T., Aoki, T., Saito, K., Muranaka, T., 2011. Triterpene functional genomics in licorice for identification of CYP72A154 involved in the biosynthesis of glycyrrhizin. Plant Cell 23, 4112-4123. https://doi.org/10.1105/tpc.110.082685.
- Sotriffer, C.A., Flader, W., Winger, R.H., Rode, B.M., Liedl, K.R., Varga, J.M., 2000. Automated docking of ligands to antibodies: methods and applications. Methods (San Diego, Calif.) 20, 280-291. https://doi.org/10.1006/meth.1999.0922. Souza-Moreira, T.M., Alves, T.B., Pinheiro, K.A., Felippe, L.G., De Lima, G.M., Watanabe, T.F., Barbosa, C.C., Santos, V.A., Lopes, N.P., Valentini, S.R., Guido, R.V., Furlan, M., Zanelli, C.F., 2016. Friedelin synthase from Maytenus ilicifolia: leucine 482 plays an essential role in the production of the most rearranged pentacyclic triterpene. Sci. Rep. 6, 36858. https://doi.org/10.1038/srep36858.
- Su, P., Cheng, Q., Wang, X., Cheng, X., Zhang, M., Tong, Y., Li, F., Gao, W., Huang, L., 2014. Characterization of eight terpenoids from tissue cultures of the Chinese herbal plant, Tripterygium wilfordii, by high-performance liquid chromatography coupled with electrospray ionization tandem mass spectrometry. Biomed. Chromatogr. : BMC (Biomed. Chromatogr.) 28, 1183-1192. https://doi.org/10.1002/bmc.3140.
- Su, P., Guan, H., Zhang, Y., Wang, X., Gao, L., Zhao, Y., Hu, T., Zhou, J., Ma, B., Tu, L., Tong, Y., Huang, L., Gao, W., 2017. Probing the single key amino acid responsible for the novel catalytic function of ent-kaurene oxidase supported by NADPHcytochrome P450 reductases in Tripterygium wilfordii. Front. Plant Sci. 8, 1756. https://doi.org/10.3389/fpls.2017.01756.
- Tamura, K., Stecher, G., Peterson, D., Filipski, A., Kumar, S., 2013. MEGA6: molecular evolutionary genetics analysis version 6.0. Mol. Biol. Evol. 30, 2725-2729. https:// doi.org/10.1093/molbev/mst197.
- Tao, X., Lipsky, P.E., 2000. The Chinese anti-inflammatory and immunosuppressive herbal remedy Tripterygium wilfordii Hook F. Rheum. Dis. Clin. N. Am. 26, 29-50. https://doi.org/10.1016/s0889-857x(05)70118-6 viii.
- Tu, L., Su, P., Zhang, Z., Gao, L., Gao, W., 2020. Genome of Tripterygium wilfordii and identification of cytochrome P450 involved in triptolide biosynthesis. Nat. Commun. 11, 971. https://doi.org/10.1038/s41467-020-14776-1.
- Wang, Z., Yeats, T., Han, H., Jetter, R., 2010. Cloning and characterization of oxidosqualene cyclases from Kalanchoe daigremontiana: enzymes catalyzing up to 10 rearrangement steps yielding friedelin and other triterpenoids. J. Biol. Chem. 285, 29703-29712. https://doi.org/10.1074/jbc.M109.098871.
- Xi, W., Liu, C., Hou, X., Yu, H., 2010. MOTHER OF FT AND TFL1 regulates seed germination through a negative feedback loop modulating ABA signaling in Arabidopsis. Plant Cell 22, 1733-1748. https://doi.org/10.1105/tpc.109.073072.
- Yang, J., Zhang, Y., 2015. I-TASSER server: new development for protein structure and function predictions. Nucleic Acids Res. 43, W174-W181. https://doi.org/10.1093/ nar/gkv342.
- Zhang, C., Freddolino, P.L., Zhang, Y., 2017. COFACTOR: improved protein function prediction by combining structure, sequence and protein-protein interaction information. Nucleic Acids Res. 45, W291-w299. https://doi.org/10.1093/nar/ gkx366.
- Zhao, Y., Zhang, Y., Su, P., Yang, J., Huang, L., Gao, W., 2017. Genetic transformation system for woody plant Tripterygium wilfordii and its application to product natural celastrol. Front. Plant Sci. 8, 2221. https://doi.org/10.3389/fpls.2017.02221.
- Zhou, J., Hu, T., Gao, L., Su, P., Zhang, Y., Zhao, Y., Chen, S., Tu, L., Song, Y., Wang, X., Huang, L., Gao, W., 2019. Friedelane-type triterpene cyclase in celastrol biosynthesis from Tripterygium wilfordii and its application for triterpenes biosynthesis in yeast. New Phytol. 223, 722-735. https://doi.org/10.1111/nph.15809.
- Zhou, J., Zhang, Y., Hu, T., Su, P., Zhang, Y., Liu, Y., Huang, L., Gao, W., 2018. Functional characterization of squalene epoxidase genes in the medicinal plant Tripterygium wilfordii. Int. J. Biol. Macromol. 120, 203-212. https://doi.org/ 10.1016/j.ijbiomac.2018.08.073.