Published May 31, 2022 | Version v1
Journal article Restricted

Stilbenes: Source plants, chemistry, biosynthesis, pharmacology, application and problems related to their clinical Application-A comprehensive review

  • 1. * & ** & State Key Laboratory of Component-based Chinese Medicine, Tianjin Key Laboratory of TCM Chemistry and Analysis, Tianjin University of Traditional Chinese & Department of Pharmacy, College of Medicine and Health Sciences, Wollo University, P. O. Box 1145, Dessie, Ethiopia

Description

Teka, Tekleab, Zhang, Lele, Ge, Xiaoyan, Li, Yanjie, Han, Lifeng, Yan, Xiaohui (2022): Stilbenes: Source plants, chemistry, biosynthesis, pharmacology, application and problems related to their clinical Application-A comprehensive review. Phytochemistry (113128) 197: 1-28, DOI: 10.1016/j.phytochem.2022.113128, URL: http://dx.doi.org/10.1016/j.phytochem.2022.113128

Files

Restricted

The record is publicly accessible, but files are restricted to users with access.

Linked records

Additional details

Identifiers

LSID
urn:lsid:plazi.org:pub:FFA4FF8BFFECF371FF92FFA2FFD6F960

References

  • Abdel-Mogib, M., Basaif, S.A., Sobahi, T.R., 2001. Stilbenes and a new acetophenone derivative from Scirpus holoschoenus. Molecules 6, 663-667. https://doi.org/ 10.3390/60800663.
  • Abe, N., Ito, T., Ohguchi, K., Nasu, M., Masuda, Y., Oyama, M., Iinuma, M., 2010. Resveratrol oligomers from Vatica albiramis. J. Nat. Prod. 73, 1499-1506. https:// doi.org/10.1021/np1002675.
  • Adrian, M., Jeandet, P., Douillet-Breuil, A., Tesson, L., Bessis, R., 2000. Stilbene content of mature Vitis vinifera berries in response to UV-C elicitation. J. Agric. Food Chem. 48, 6103-6105. https://doi.org/10.1021/jf0009910.
  • Aguirre, L., Milton-Laskibar, I., Hijona, E., Bujanda, L., Rimando, A.M., Portillo, M.P., 2016. Effects of pterostilbene in brown adipose tissue from obese rats. J. Physiol. Biochem. 73, 457-464. https://doi.org/10.1007/s13105-017-0556-2.
  • Ahmed, T., Javed, S., Javed, S., Tariq, A., ˇSamec, D., Tejada, S., Nabavi, S.M., 2017. Resveratrol and Alzheimer' s disease: mechanistic insights. Mol. Neurobiol. 54, 2622-2635. https://doi.org/10.1007/s12035-016-9839-9.
  • Aja, I., Da Costa, G., Pedrot, E., Iglesias, M.L., Palos Pinto, A., Valls, J., Chaher, N., Ruiz- Larrea, M.B., M´erillon, J.M., Atmani, D., Ruiz Sanz, J.I., Richard, T., 2019. Unusual stilbene glucosides from Vitis vinifera roots. OENO One 53, 3. https://doi.org/ 10.20870/oeno-one.2019.53.3.2462.
  • Akhtar, M.S., Swamy, M.K., Sinniah, U.R., 2019. Natural Bio-active Compounds, ume 1. Production and Applications. Springer Nature, Singapore.
  • Akinwumi, B.C., Bordun, K.M., Anderson, H.D., 2018. Biological activities of stilbenoids. Int. J. Mol. Sci. 19, 792. https://doi.org/10.3390/ijms19030792.
  • Al Rahim, M., Rimando, A.M., Silistreli, K., El-Alfy, A.T., 2013. Anxiolytic action of pterostilbene: involvement of hippocampal ERK phosphorylation. Planta Med. 79, 723-730. https://doi.org/10.1096/fasebj.26.1_supplement.1045.4.
  • Albert, S., Horbach, R., Deising, H.B., Siewert, B., Csuk, R., 2011. Synthesis and antimicrobial activity of (E) stilbene derivatives. Bioorg. Med. Chem. 19, 5155-5166. https://doi.org/10.1016/j.bmc.2011.07.015.
  • Ali, F., Assanta, M.A., Robert, C., 2011. Gnetum africanum: a wild food plant from the African forest with many nutritional and medicinal properties. J. Med. Food 14, 1289-1297. https://doi.org/10.1089/jmf.2010.0327.
  • Ali, Z., Tanaka, T., Iliya, I., Iinuma, M., Furusawa, M., Ito, T., Darnaedi, D., 2003. Phenolic constituents of Gnetum klossii. J. Nat. Prod. 66, 558-560. https://doi.org/ 10.1021/np020532o.
  • Amri, A., Chaumeil, J., Sfar, S., Charrueau, C., 2012. Administration of resveratrol: what formulation solutions to bioavailability limitations? J. Contr. Release 158, 182-193. https://doi.org/10.1016/j.jconrel.2011.09.083.
  • Annunziata, G., Maisto, M., Schisano, C., Ciampaglia, R., Narciso, V., Tenore, G.C., Novellino, E., 2018. Resveratrol as a novel anti-herpes simplex virus nutraceutical agent: an overview. Viruses 10, 473. https://doi.org/10.3390/v10090473.
  • Arung, E.T., Shimizu, K., Kondo, R., 2011. Artocarpus plants as a potential source of skin whitening agents. Nat. Prod. Commun. 6, 1397-1402. https://doi.org/10.1177/ 1934578X1100600943.
  • Askari, A., Worthen, L.R., Shimizu, Y., 1972. Gaylussacin, a new stilbene derivative from species of Gaylussacia. Lloydia 35, 49-54.
  • Atun, S., 2006. Activity of Oligoresveratrols from Stem Bark of Hopea mengarawan (Dipterocarpaceae) as Hydroxyl Radical Scavenger. HAYATI J. Biosci. 13, 2. https:// doi.org/10.4308/hjb.13.2.65.
  • Avula, B., Joshi, V.C., Wang, Y.H., Khan, I.A., 2007. Simultaneous identification and quantification of anthraquinones, polydatin, and resveratrol in Polygonum multiflorum, various Polygonum species, and dietary supplements by liquid chromatography and microscopic study of Polygonum species. J. AOAC Int. 90, 1532-1538.
  • Baba, K., Kido, T., Maeda, K., Taniguchi, M., Kozawa, M., 1992. Two stilbenoids from Cassia garrettiana. Phytochemistry 31, 3215-3218. https://doi.org/10.1016/0031- 9422(92)83478-H.
  • Banik, K., Ranaware, A.M., Harsha, C., Nitesh, T., Girisa, S., Deshpande, V., Kunnumakkara, A.B., 2020. Piceatannol: a natural stilbene for the prevention and treatment of cancer. Pharmacol. Res. 153, 104635. https://doi.org/10.1016/j. phrs.2020.104635.
  • Bassarello, C., Bifulco, G., Montoro, P., Skhirtladze, A., Benidze, M., Kemertelidze, E., Piacente, S., 2007. Yucca gloriosa: a source of phenolic derivatives with strong antioxidant activity. J. Agric. Food Chem. 55, 6636-6642. https://doi.org/10.1021/ jf071131n.
  • Basset, C., Rodrigues, A.M., Eparvier, V., Silva, M.R., Lopes, N.P., Sabatier, D., Stien, D., 2012. Secondary metabolites from Spirotropis longifolia (DC) Baill and their antifungal activity against human pathogenic fungi. Phytochemistry 74, 166-172. https://doi.org/10.1016/j.phytochem.2011.10.011.
  • Belofsky, G., French, A.N., Wallace, D.R., Dodson, S.L., 2004. New geranyl stilbenes from Dalea purpurea with in vitro opioid receptor affinity. J. Nat. Prod. 67, 26-30. https:// doi.org/10.1021/np030258d.
  • Beutler, J., Jato, J., Cragg, G., Boyd, M., 2000. Schweinfurthin D, a cytotoxic stilbene from Macaranga schweinfurthii. Nat. Prod. Lett. 14, 399-404. https://doi.org/ 10.1080/10575630008043774.
  • Biais, B., Krisa, S., Cluzet, S., Da Costa, G., Waffo-Teguo, P., M´erillon, J.M., 2017. Antioxidant and Cytoprotective Activities of Grapevine Stilbenes. J. Agric. Food Chem. 65, 4952-4960. https://doi.org/10.1021/acs.jafc.7b01254.
  • Blaszczyk, A., Sady, S., Sielicka-Ro´zy Ë™nska ´, M., 2019. The stilbene profile in edible berries. Phytochemistry Rev. 18, 1-31. https://doi.org/10.1007/s11101-018-9580- 2.
  • Bohlmann, F., Hoffmann, E., 1979. Cannabigerol-¨ahnliche verbindungen aus Helichrysum umbraculigerum. Phytochemistry 18, 1371-1374. https://doi.org/10.1016/0031- 9422(79)83025-3.
  • Bonnefont-Rousselot, D., 2016. Resveratrol and cardiovascular diseases. Nutrients 8, 250. https://doi.org/10.3390/nu8050250.
  • Boonlaksiri, C., Oonanant, W., Kongsaeree, P., Kittakoop, P., Tanticharoen, M., Thebtaranonth, Y., 2000. An antimalarial stilbene from Artocarpus integer. Phytochemistry 54, 415-417. https://doi.org/10.1016/S0031-9422(00)00074-1.
  • Boonyaketgoson, S., Rukachaisirikul, V., Phongpaichit, S., Trisuwan, K., 2017. Cytotoxic arylbenzofuran and stilbene derivatives from the twigs of Artocarpus heterophyllus. Tetrahedron Lett. 58, 1585-1589. https://doi.org/10.1016/j.tetlet.2017.03.020.
  • Boralle, N., Gottlieb, H.E., Gottlieb, O.R., Kubitzki, K., Lopes, L.M.X., Yoshida, M.M., Young, M.C., 1993. Oligostilbenoids from Gnetum venosum. Phytochemistry 34, 1403-1407. https://doi.org/10.1016/0031-9422(91)80038-3.
  • Borgonovo, G., Caimi, S., Morini, G., Scaglioni, L., Bassoli, A., 2008. Taste-active compounds in a traditional Italian food: 'lampascioni. Chem. Biodivers. 5, 1184-1194. https://doi.org/10.1002/cbdv.200890095.
  • Braukmann, T.W., Kuzmina, M., Stefanovi´c, S., 2009. Loss of all plastid ndh genes in Gnetales and conifers: extent and evolutionary significance for the seed plant phylogeny. Curr. Genet. 55, 323-337. https://doi.org/10.1007/s00294-009-0249-7.
  • Brkljaˇca, R., White, J.M., Urban, S., 2015. Phytochemical investigation of the constituents derived from the Australian plant Macropidia fuliginosa. J. Nat. Prod. 78, 1600-1608. https://doi.org/10.1021/acs.jnatprod.5b00161.
  • Cai, J.Z., Tang, R., Ye, G.F., Qiu, S.X., Zhang, N.L., Hu, Y.J., Shen, X.L., 2015. A halogencontaining stilbene derivative from the leaves of Cajanus cajan that induces osteogenic differentiation of human mesenchymal stem cells. Molecules 20, 10839-10847. https://doi.org/10.3390/molecules200610839.
  • Cavallini, G., Straniero, S., Donati, A., Bergamini, E., 2016. Resveratrol requires red wine polyphenols for optimum antioxidant activity. J. Nutr. Health Aging 20, 540-545. https://doi.org/10.1016/j.cclet.2013.01.014.
  • Chabert, P., Fougerousse, A., Brouillard, R., 2006. Anti-mitotic properties of resveratrol analog (Z)-3,5,4'-trimethoxystilbene. Biofactors 27, 37-46. https://doi.org/ 10.1002/biof.5520270104.
  • Chakraborty, A., Gupta, N., Ghosh, K., Roy, P., 2010. In vitro evaluation of the cytotoxic, anti-proliferative and anti-oxidant properties of pterostilbene isolated from Pterocarpus marsupium. Toxicol. Vitro 24, 1215-1228. https://doi.org/10.1016/j. tiv.2010.02.007.
  • Chan, C.N., Trinit´e, B., Levy, D.N., 2017. Potent inhibition of HIV-1 replication in resting CD4 T cells by resveratrol and pterostilbene. Antimicrob. Agents Chemother. 61 https://doi.org/10.1128/AAC.00408-17 e00408-00417.
  • Chan, E., Wong, C.W., Tan, Y.H., Foo, J.P.Y., Wong, S., Chan, H.T., 2019. Resveratrol and pterostilbene: a comparative overview of their chemistry, biosynthesis, plant sources and pharmacological properties. J. Appl. Pharmaceut. Sci. 9, 124-129. https://doi. org/10.7324/japs.2019.90717.
  • Chatsumpun, N., Chuanasa, T., Sritularak, B., Lipipun, V., Jongbunprasert, V., Ruchirawat, S., Likhitwitayawuid, K., 2016. Oxyresveratrol: Structural Modification and Evaluation of Biological Activities. Molecules 21, 489. https://doi.org/10.3390/ molecules21040489.
  • Chedea, V.S., Vicas, S.I., Sticozzi, C., Pessina, F., Frosini, M., Maioli, E., Valacchi, G., 2017. Resveratrol: from diet to topical usage. Food Funct. 8, 3879-3892. https://doi. org/10.1039/C7FO01086A.
  • Chen, C.C., Huang, Y.L., Yeh, P.Y., Ou, J.C., 2003. Cyclized geranyl stilbenes from the rhizomes of Helminthostachys zeylanica. Planta Med. 69, 964-967. https://doi.org/ 10.1055/s-2003-45112.
  • Chen, C.W., Li, Y., Hu, S., Zhou, W., Meng, Y., Li, Z., DePamphilis, M.L., 2019. DHS (trans -4,4'-dihydroxystilbene) suppresses DNA replication and tumor growth by inhibiting RRM2 (ribonucleotide reductase regulatory subunit M2). Oncogene 38, 2364-2379. https://doi.org/10.1038/s41388-018-0584-6.
  • Chen, H., Lin, M., 1998. A pair of dimeric stilbene epimers from Gnetum montanum. Chin. Chem. Lett. 9, 1013-1015.
  • Cheng, K., Ma, D., Yang, G., Hu, C., 2008. A new tetrastilbene from Caragana sinica. Chin. Chem. Lett. 19, 711-715. https://doi.org/10.1016/j.cclet.2008.04.025.
  • Chimento, A., De Amicis, F., Sirianni, R., Sinicropi, M.S., Puoci, F., Casaburi, I., Pezzi, V., 2019. Progress to improve oral bioavailability and beneficial effects of resveratrol. Int. J. Mol. Sci. 20, 1381. https://doi.org/10.3390/ijms20061381.
  • Chin, Y.T., Cheng, G.Y., Shih, Y.J., Lin, C.Y., Lin, S.J., Lai, H.Y., Whang-Peng, J., Chiu, H. C., Lee, S.Y., Fu, E., Tang, H.Y., Lin, H.Y., Liu, L.F., 2017. Therapeutic applications of resveratrol and its derivatives on periodontitis. Ann. N. Y. Acad. Sci. 1403, 101-108. https://doi.org/10.1111/nyas.13433.
  • Chiou, W.F., Huang, Y.L., Liu, Y.W., 2014. (+)-Vitisin A inhibits osteoclast differentiation by preventing TRAF6 ubiquitination and TRAF6-TAK1 formation to suppress NFATc1 activation. PLoS One 9, e89159. https://doi.org/10.1371/journal. pone.0089159.
  • Cho, H., Park, J.H., Ahn, E.K., Oh, J.S., 2018. Kobophenol A isolated from roots of Caragana sinica (Buc' hoz) rehder exhibits anti-inflammatory activity by regulating NF-κB nuclear translocation in J774A.1 cells. Toxicol. Rep. 5, 647-653. https://doi. org/10.1016/j.toxrep.2018.05.011.
  • Cho, H.M., Quy Ha, T.K., Tung Pham, H.T., An, J.P., Huh, J., Lee, B.W., Oh, W.K., 2019. Oligostilbenes from the leaves of Gnetum latifolium and their biological potential to inhibit neuroinflammation. Phytochemistry 165, 112044. https://doi.org/10.1016/ j.phytochem.2019.05.017.
  • Chong, J., Poutaraud, A., Hugueney, P., 2009. Metabolism and roles of stilbenes in plants. Plant Sci. 177, 143-155. https://doi.org/10.1016/j.plantsci.2009.05.012.
  • Chuanasa, T., Phromjai, J., Lipipun, V., Likhitwitayawuid, K., Suzuki, M., Pramyothin, P., Shiraki, K., 2008. Anti-herpes simplex virus (HSV-1) activity of oxyresveratrol derived from Thai medicinal plant: mechanism of action and therapeutic efficacy on cutaneous HSV-1 infection in mice. Antivir. Res. 80, 62-70. https://doi.org/ 10.1016/j.antiviral.2008.05.002.
  • Cooksey, C.J., Dahiya, J.S., Garratt, P.J., Strange, R.N., 1980. Two novel stilbene-2- carboxylic acid phytoalexins from Cajanus cajan. Phytochemistry 21, 2935-2938. https://doi.org/10.1016/0031-9422(80)85072-2.
  • Cravens, A., Payne, J., Smolke, C.D., 2019. Synthetic biology strategies for microbial biosynthesis of plant natural products. Nat. Commun. 10, 1-12. https://doi.org/ 10.1038/s41467-019-09848-w.
  • Cui, L., Na, M., Oh, H., Bae, E.Y., Jeong, D.G., Ryu, S.E., Ahn, J.S., 2006. Protein tyrosine phosphatase 1B inhibitors from Morus root bark. Bioorg. Med. Chem. Lett. 16, 1426-1429. https://doi.org/10.1016/j.bmcl.2005.11.071.
  • D' Abrosca, B., Fiorentino, A., Golino, A., Monaco, P., Oriano, P., Pacifico, S., 2005. Carexanes: prenyl stilbenoid derivatives from Carex distachya. Tetrahedron Lett. 46, 5269-5272. https://doi.org/10.1016/j.tetlet.2005.06.036.
  • Dai, J.R., Hallock, Y.F., Cardellina, J.H., Boyd, M.R., 1998. HIV-inhibitory and cytotoxic oligostilbenes from the leaves of Hopea malibato. J. Nat. Prod. 61, 351-353. https:// doi.org/10.1021/np970519h.
  • Das, S., Das, D.K., 2007. Resveratrol: a therapeutic promise for cardiovascular diseases. Recent Pat. Cardiovasc. Drug Discov. 2, 133-138. https://doi.org/10.2174/ 157489007780832560.
  • Dawidar, A., Ezmiriy, S., Abdel-Mogib, M., el-Dessouki, Y., Angawi, R., 2000. New stilbene carboxylic acid from Convolvulus hystrix. Pharmazie 55, 848-849.
  • de Bruijn, W.J.C., Araya-Cloutier, C., Bijlsma, J., de Swart, A., Sanders, M.G., de Waard, P., Vincken, J.P., 2018. Antibacterial prenylated stilbenoids from peanut (Arachis hypogaea). Phytochem. Lett. 28, 13-18. https://doi.org/10.1016/j. phytol.2018.09.004.
  • De Filippis, B., Ammazzalorso, A., Amoroso, R., Giampietro, L., 2019. Stilbene derivatives as new perspective in antifungal medicinal chemistry. Drug Dev. Res. 80, 285-293. https://doi.org/10.1002/ddr.21525.
  • De Filippis, B., Ammazzalorso, A., Fantacuzzi, M., Giampietro, L., Maccallini, C., Amoroso, R., 2017. Anticancer activity of stilbene-based derivatives. ChemMedChem 12, 558-570. https://doi.org/10.1002/cmdc.201700045.
  • De Marino, S., Gala, F., Borbone, N., Zollo, F., Vitalini, S., Visioli, F., Iorizzi, M., 2007. Phenolic glycosides from Foeniculum vulgare fruit and evaluation of antioxidative activity. Phytochemistry 68, 1805-1812. https://doi.org/10.1016/j. phytochem.2007.03.029.
  • Del Rio, D., Rodriguez-Mateos, A., Spencer, J.P., Tognolini, M., Borges, G., Crozier, A., 2013. Dietary (poly)phenolics in human health: structures, bioavailability, and evidence of protective effects against chronic diseases. Antioxidants Redox Signal. 18, 1818-1892. https://doi.org/10.1089/ars.2012.4581.
  • Delmas, D., Aires, V., Limagne, E., Dutartre, P., Mazu´e, F., Ghiringhelli, F., Latruffe, N., 2011. Transport, stability, and biological activity of resveratrol. Ann. N. Y. Acad. Sci. 1215, 48-59. https://doi.org/10.1111/j.1749-6632.2010.05871.x.
  • Ducrot, P.H., Kollmann, A., Bala, A.E., Majira, A., Kerhoas, L., Delorme, R., Einhorn, J., 1998. Cyphostemmins A-B, two new antifungal oligostilbenes from Cyphostemma crotalarioides (Vitaceae). Tetrahedron Lett. 39, 9655-9658. https://doi.org/ 10.1016/S0040-4039(98)02207-2.
  • Dwibedi, V., Kalia, S., Saxena, S., 2019. Isolation and enhancement of resveratrol production in Xylaria psidii by exploring the phenomenon of epigenetics: using DNA methyltransferases and histone deacetylase as epigenetic modifiers. Mol. Biol. Rep. 46, 4123-4137. https://doi.org/10.1007/s11033-019-04862-z.
  • Dyck, G.J.B., Raj, P., Zieroth, S., Dyck, J.R.B., Ezekowitz, J.A., 2019. The effects of resveratrol in patients with cardiovascular disease and heart failure: a narrative review. Int. J. Mol. Sci. 20, 904. https://doi.org/10.3390/ijms20040904.
  • Elliott, P.J., Jirousek, M., 2008. Sirtuins: novel targets for metabolic disease. Curr. Opin. Invest. Drugs 9, 371-378.
  • Elsbaey, M., Ibrahim, M.A.A., Bar, F.A., Elgazar, A.A., 2021. Chemical constituents from coconut waste and their in silico evaluation as potential antiviral agents against SARS-CoV-2. S. Afr. J. Bot. 141, 278-289. https://doi.org/10.1016/j. sajb.2021.05.018.
  • Eo, S.H., Kim, S.J., 2019. Resveratrol-mediated inhibition of cyclooxygenase-2 in melanocytes suppresses melanogenesis through extracellular signal-regulated kinase 1/2 and phosphoinositide 3-kinase/Akt signalling. Eur. J. Pharmacol. 860, 172586. https://doi.org/10.1016/j.ejphar.2019.172586.
  • El Khawand, T., Courtois, A., Valls, J., Richard, T., Krisa, S., 2018. A review of dietary stilbenes: sources and bioavailability. Phytochemistry Rev. 17, 1007-1029. https:// doi.org/10.1007/s11101-018-9578-9.
  • Estrela, J.M., Ortega, A., Mena, S., Rodriguez, M.L., Asensi, M., 2013. Pterostilbene: biomedical applications. Crit. Rev. Clin. Lab Sci. 50, 65-78. https://doi.org/ 10.3109/10408363.2013.805182.
  • Er¨asalo, H., H¨am¨al¨ainen, M., Lepp¨anen, T., M¨aki-Opas, I., Laavola, M., Haavikko, R., Moilanen, E., 2018. Natural Stilbenoids Have Anti-Inflammatory Properties in Vivo and Down-Regulate the Production of Inflammatory Mediators NO, IL6, and MCP1 Possibly in a PI3K/Akt-Dependent Manner. J. Nat. Prod. 81. https://doi.org/ 10.1021/acs.jnatprod.7b00384.
  • Erdogan Orhan, I., Tosun, F., Sener, B., 2008. Coumarin, Anthroquinone and Stilbene Derivatives with Anticholinesterase Activity. Z. Naturforsch. C. J. Biosci. 63, 366-370. https://doi.org/10.1515/znc-2008-5-610.
  • Ersam, T., Fatmawati, S., Fauzia, D., 2016. New prenylated stilbenes and antioxidant activities of Cajanus cajan (L.) Millsp. (Pigeon pea). Indones. J. Chem. 16, 151. https://doi.org/10.22146/ijc.21158.
  • Esatbeyoglu, T., Ewald, P., Yasui, Y., Yokokawa, H., Wagner, A.E., Matsugo, S., Rimbach, G., 2016. Chemical characterization, free radical scavenging, and cellular antioxidant and anti-inflammatory properties of a stilbenoid-rich root extract of Vitis vinifera. Oxid. Med. Cell. Longev. 2016, 8591286. https://doi.org/10.1155/2016/ 8591286.
  • Fan, Y., Zhao, L., Huang, X., Jia, Q., Wang, W., Gao, M., He, J., 2020. Pharmacokinetic and bioavailability studies of α- viniferin after intravenous and oral administration to rats. J. Pharm. Biomed. Anal. 188, 113376. https://doi.org/10.1016/j. jpba.2020.113376.
  • Fang, N., Casida, J.E., 1999. New bioactive flavonoids and stilbenes in cube´resin insecticide. J. Nat. Prod. 62, 205-210. https://doi.org/10.1021/np980119+.
  • Farag, S., Takaya, Y., Niwa, M., 2009. Stilbene glucosides from the bulbs of Iris tingitana. Phytochem. Lett. 2, 148-151. https://doi.org/10.1016/j.phytol.2009.05.001.
  • Feng, W.S., Cao, X.W., Kuang, H.X., Zheng, X.K., 2006. A new stilbene glycoside from Dryopteris sublaeta. Acta Pharm. Sin. 40, 1131-1134.
  • Fernandez-Cruz, E., Cerezo, A.B., Cantos-Villar, E., 2019. Inhibition of VEGFR-2 Phosphorylation and Effects on Downstream Signaling Pathways in Cultivated Human Endothelial Cells by Stilbenes from Vitis Spp. J. Agric. Food Chem. 67, 3909-3918. https://doi.org/10.1021/acs.jafc.9b00282.
  • Fidelis, M., Santos, J., Escher, G., Carmo, M., Azevedo, L., Silva, M., Granato, D., 2018. In vitro antioxidant and antihypertensive compounds from camu-camu ( Myrciaria dubia McVaugh, Myrtaceae) seed coat: A multivariate structure-activity study. Food Chem. Toxicol. 120, 479-490. https://doi.org/10.1016/j.fct.2018.07.043.
  • Fiorentino, A., D' Abrosca, B., Pacifico, S., Natale, A., Monaco, P., 2006. Structures of bioactive carexanes from the roots of Carex distachya Desf. Phytochemistry 67, 971-977. https://doi.org/10.1016/j.phytochem.2006.04.003.
  • Flamini, R., Zanzotto, A., de Rosso, M., Lucchetta, G., Vedova, A.D., Bavaresco, L., 2016. Stilbene oligomer phytoalexins in grape as a response to Aspergillus carbonarius infection. Physiol. Mol. Plant Pathol. 93, 112-118. https://doi.org/10.1016/j. pmpp.2016.01.011.
  • Franco, L., Bravo, R., Galan, C., S´anchez, C., Rodriguez, A.B., Barrigs, C., Cubero, J., 2013. Effects of beer, Hops (Humulus lupulus) on total antioxidant capacity in plasma of stressed subjects. Cell Membr. Free. Radic. Res. 5, 232-235.
  • Gabaston, J., Cantos-Villar, E., Biais, B., Waffo-Teguo, P., Renouf, E., Corio-Costet, M.F., M´erillon, J.M., 2017. Stilbenes from Vitis vinifera L. Waste: A Sustainable Tool for Controlling Plasmopara Viticola. J. Agric. Food Chem. 65, 2711-2718. https://doi. org/10.1021/acs.jafc.7b00241.
  • Gachon, C.M., Langlois-Meurinne, M., Saindrenan, P., 2005. Plant secondary metabolism glycosyltransferases: the emerging functional analysis. Trends Plant Sci. 10, 542-549. https://doi.org/10.1016/j.tplants.2005.09.007.
  • Gangadevi, S., Badavath, V.N., 2021. Kobophenol A Inhibits Binding of Host ACE2 Receptor with Spike RBD Domain of SARS-CoV-2, a Lead Compound for Blocking COVID-19. J. Phys. Chem. Lett. 12, 1793-1802. https://doi.org/10.1021/acs. jpclett.0c03119.
  • Gao, S., Liu, J., Fu, G.M., Hu, Y.C., Yu, S.S., Fan, L.H., Qu, J., 2007. Resveratrol/ phloroglucinol glycosides from the roots of Lysidice rhodostegia. Planta Med. 73, 163-166. https://doi.org/10.1055/s-2006-951770.
  • Garo, E., Hu, J.F., Goering, M., Hough, G., O' Neil-Johnson, M., Eldridge, G., 2007. Stilbenes from the orchid phragmipedium sp. J. Nat. Prod. 70, 968-973. https://doi. org/10.1021/np070014j.
  • Ge, H.M., Zhu, C.H., Shi da, H., Zhang, L.D., Xie, D.Q., Yang, J., Tan, R.X., 2008. Hopeahainol A: an acetylcholinesterase inhibitor from Hopea hainanensis. Chemistry 14, 376-381. https://doi.org/10.1002/chem.200700960.
  • Ghanim, H., Sia, C.L., Abuaysheh, S., Korzeniewski, K., Patnaik, P., Marumganti, A., Dandona, P., 2010. An antiinflammatory and reactive oxygen species suppressive effects of an extract of Polygonum cuspidatum containing resveratrol. J. Clin. Endocrinol. Metab. 95, E1-E8. https://doi.org/10.1210/jc.2010-0482.
  • Gu, R., Huang, Z., Liu, H., Qing, Q., Zhuan, Z., Yang, L., Huang, W., 2019. Moracin attenuates LPS-induced inflammation in nucleus pulposus cells via Nrf2/HO-1 and NF-κB/TGF-β pathway. Biosci. Rep. 39 https://doi.org/10.1042/BSR20191673. BSR20191673.
  • Schmidt, A., 2011. Biosynthesis of the major tetrahydroxystilbenes in spruce, astringin and isorhapontin, proceeds via resveratrol and is enhanced by fungal infection. Plant Physiol 157, 876-890. https://doi.org/10.1104/pp.111.181420.
  • Han, Y.S., Penthala, N.R., Oliveira, M., Mespl`ede, T., Xu, H., Quan, Y., Wainberg, M.A., 2017. Identification of resveratrol analogs as potent anti-dengue agents using a cellbased assay. J. Med. Virol. 89, 397-407. https://doi.org/10.1002/jmv.24660.
  • Hanawa, F., Tahara, S., Mizutani, J., 1992. Antifungal stress compounds from Veratrum grandiflorum leaves treated with cupric chloride. Phytochemistry 31, 3005-3007. https://doi.org/10.1016/0031-9422(92)83436-3.
  • Hapeshi, A., Benarroch, J.M., Clarke, D.J., Waterfield, N.R., 2019. Iso-propyl stilbene: a life cycle signal? Microbiology (Read.) 165, 516-526. https://doi.org/10.1099/ mic.0.000790.
  • Harmalkar, D.S., Mali, J.R., Sivaraman, A., Choi, Y., Lee, K., 2018. Schweinfurthins A-Q: isolation, synthesis, and biochemical properties. RSC Adv. 8, 21191-21209. https:// doi.org/10.1039/c8ra02872a.
  • He, C.N., Peng, Y., Xu, L.J., Liu, Z.A., Gu, J., Zhong, A.G., Xiao, P.G., 2010. Three new oligostilbenes from the seeds of Paeonia suffruticosa. Chem. Pharm. Bull. 58, 843-847. https://doi.org/10.1248/cpb.58.843.
  • Holzmann, N., Bernasconi, L., Bisby, R.H., Parker, A.W., 2018. Influence of charge transfer on the isomerisation of stilbene derivatives for application in cancer therapy. Phys. Chem. Chem. Phys. 20, 27778-27790. https://doi.org/10.1039/ C8CP05375H.
  • Hovelstad, H., Leirset, I., Oyaas, K., Fiksdahl, A., 2006. Screening analyses of pinosylvin stilbenes, resin acids and lignans in Norwegian conifers. Molecules 11, 103-114. https://doi.org/10.3390/11010103.
  • Holscher ¨, D., Schneider, B., 1996. A resveratrol dimer from Anigozanthos preissii and Musa cavendish. Phytochemistry 43, 471-473. https://doi.org/10.1016/0031-9422 (96)00317-2.
  • Holscher ¨, D., Schneider, B., 1999. HPLC-NMR analysis of phenylphenalenones and a stilbene from Anigozanthos flavidus. Phytochemistry 50, 155-161. https://doi.org/ 10.1016/S0031-9422(98)00495-6.
  • Hsieh, T.C., Wu, J.M., 2019. Unraveling and trailblazing cardioprotection by resveratrol. In: Hsieh, T.C., Wu, J.M. (Eds.), Resveratrol: State-Of-The-Art Science and Health Applications. World Scientific, Singapore, pp. 1-28.
  • Hu, L., Chen, N.N., Hu, Q., Yang, C., Yang, Q.S., Wang, F.F., 2014. An unusual piceatannol dimer from Rheum austral D. Don with antioxidant activity. Molecules 19, 11453-11464. https://doi.org/10.3390/molecules190811453.
  • Hu, Y.C., Ma, S.G., Yu, S.S., Wu, X.F., Li, Y., 2010. Phenolic glycosides isolated from the bark of Lysidice brevicalyx Wei. J. Asian Nat. Prod. Res. 12, 516-521. https://doi.org/ 10.1080/10286020.2010.489818.
  • Huang, D.D., Shi, G., Jiang, Y., Yao, C., Zhu, C., 2020. A review on the potential of Resveratrol in prevention and therapy of diabetes and diabetic complications. Biomed. Pharmacother. 125, 109767. https://doi.org/10.1016/j. biopha.2019.109767.
  • Huang, J., Geng, X., Peng, C., Grove, T.Z., Turner, S.R., 2018. Enhanced fluorescence properties of stilbene-containing alternating copolymers. Macromol. Rapid Commun. 39, 1700530. https://doi.org/10.1002/marc.201700530.
  • Huang, K.S., Lin, M., Yu, L.N., Kong, M., 2000a. Four novel oligostilbenes from the roots of Vitis amurensis. Tetrahedron 56, 1321-1329. https://doi.org/10.1016/S0040- 4020(99)01034-0.
  • Huang, K.S., Zhou, S., Lin, M., Wang, Y.H., 2002. An isorhapontigenin tetramer and a novel stilbene dimer from Gnetum hainanense. Planta Med. 68, 916-920. https://doi. org/10.1055/s-2002-34951.
  • Huang, K.S., Li, R.L., Wang, Y.H., Lin, M., 2001. Three new stilbene trimers from the lianas of Gnetum hainanense. Planta Med. 67, 61-64. https://doi.org/10.1055/s- 2001-10875.
  • Huang, K.S., Lin, M., Yu, L.N., Kong, M., 1999. A new oligostilbene from the roots of Vitis amurensis. Chin. Chem. Lett. 10, 775-776.
  • Huang, Y.L., Tsai, W.J., Shen, C.C., Chen, C.C., 2005. Resveratrol derivatives from the roots of Vitis thunbergii. J. Nat. Prod. 68, 217-220. https://doi.org/10.1021/ np049686p.
  • Iguchi, K., Toyama, T., Ito, T., Shakui, T., Usui, S., Oyama, M., Hirano, K., 2012. Antiandrogenic activity of resveratrol analogs in prostate cancer LNCaP cells. J. Androl. 33, 1208-1215. https://doi.org/10.2164/jandrol.112.016782.
  • Iliya, I., Akao, Y., Matsumoto, K., Nakagawa, Y., Zulfiqar, A., Ito, T., Iinuma, M., 2006. Growth inhibition of stilbenoids in Welwitschiaceae and Gnetaceae through induction of apoptosis in human leukemia HL60 cells. Biol. Pharm. Bull. 29, 1490-1492. https://doi.org/10.1248/bpb.29.1490.
  • Iliya, I., Ali, Z., Tanaka, T., Iinuma, M., Furusawa, M., Nakaya, K., Murata, J., Darnaedi, D., 2002a. Four new stilbene oligomers in the root of Gnetum gnemon. Helv. Chim. Acta 85, 2538-2546. https://doi.org/10.1002/1522-2675(200208)85: 8<2538::AID-HLCA2538>3.0.CO;2-J.
  • Iliya, I., Ali, Z., Tanaka, T., Iinuma, M., Furusawa, M., Nakaya, K., Ubukata, M., 2003a. Stilbene derivatives from Gnetum gnemon linn. Phytochemistry 62, 601-606. https:// doi.org/10.1016/S0031-9422(02)00670-2.
  • Iliya, I., Tanaka, T., Ali, Z., Iinuma, M., Furusawa, M., Nakaya, K.I., Ubukata, M., 2003b. Six flavonostilbenes from Gnetum afircanum and Gnetum gnemon. Heterocycles 60, 159-166.
  • Iliya, I., Tanaka, T., Iinuma, M., Ali, Z., Furasawa, M., Nakaya, K.I., 2002b. Dimeric stilbenes from stem lianas of Gnetum africanum. Heterocycles 57, 1057-1062. https://doi.org/10.1002/chin.200243242.
  • Iliya, I., Tanaka, T., Iinuma, M., Ali, Z., Furasawa, M., Nakaya, K.I., Ubukata, M., 2002c. Four dimeric stilbenes in stem lianas of Gnetum africanum. Heterocycles 57, 1507-1512. https://doi.org/10.3987/COM-02-9527.
  • Iliya, I., Tanaka, T., Iinuma, M., Ali, Z., Furasawa, M., Nakaya, K.I., Darnaedi, D., 2002d. Stilbene derivatives from two species of Gnetaceae. Chem. Pharm. Bull. 50, 796-801. https://doi.org/10.1248/cpb.50.796.
  • Iliya, I., Tanaka, T., Iinuma, M., Furusawa, M., Ali, Z., Nakaya, K.I., Darnaedi, D., 2002e. Five stilbene glucosides from Gnetum gnemonoides and Gnetum africanum. Helv. Chim. Acta 85, 2394-2402. https://doi.org/10.1002/1522-2675(200208)85: 8<2394::AID-HLCA2394>3.0.CO;2-6.
  • Ito, T., Ali, Z., Iliya, I., Furusawa, M., Tanaka, T., Nakaya, K.I., Iinuma, M., 2005a. Occurrence of stilbene glucosides in Upuna borneensis. Helv. Chim. Acta 88, 23-34. https://doi.org/10.1002/hlca.200490293.
  • Ito, T., Endo, H., Shinohara, H., Oyama, M., Akao, Y., Iinuma, M., 2012. Occurrence of stilbene oligomers in Cyperus rhizomes. Fitoterapia 83, 1420-1429. https://doi.org/ 10.1016/j.fitote.2012.08.005.
  • Ito, T., Tanaka, T., Iinuma, M., Iliya, I., Nakaya, K.I., Ali, Z., Murata, J., 2003a. New resveratrol oligomers in the stem bark of Vatica pauciflora. Tetrahedron 59, 5347-5363. https://doi.org/10.1016/S0040-4020(03)00730-0.
  • Ito, T., Tanaka, T., Iinuma, M., Nakaya, K., Takahashi, Y., Sawa, R., Darnaedi, D., 2004. Three new resveratrol oligomers from the stem bark of Vatica pauciflora. J. Nat. Prod. 67, 932-937. https://doi.org/10.1021/np030236r.
  • Ito, T., Tanaka, T., Nakaya, K.I., Iinuma, M., Takahashi, Y., Naganawa, H., Lee, K.H., 2001. A novel bridged stilbenoid trimer and four highly condensed stilbenoid oligomers in Vatica rassak. Tetrahedron 57, 7309-7321. https://doi.org/10.1016/ S0040-4020(01)00697-4.
  • Ioset, J.R., Marston, A., Gupta, M.P., Hostettmann, K., 2001. Five new prenylated stilbenes from the root bark of Lonchocarpus chiricanus. J. Nat. Prod. 64, 710-715. https://doi.org/10.1021/np000597w.
  • Jardim, F.R., de Rossi, F.T., Nascimento, M.X., da Silva Barros, R.G., Borges, P.A., Prescilio, I.C., de Oliveira, M.R., 2018. Resveratrol and brain mitochondria: a review. Mol. Neurobiol. 55, 2085-2101. https://doi.org/10.1007/s12035-017-0448- z.
  • Jayasinghe, U.L.B., Puvanendran, S., Hara, N., Fujimoto, Y., 2004. Stilbene derivatives with antifungal and radical scavenging properties from the stem bark of Artocarpus nobilis. Nat. Prod. Res. 18, 571-574. https://doi.org/10.1080/ 14786410310001643867.
  • Jeandet, P., Delaunois, B., Conreux, A., Donnez, D., Nuzzo, V., Cordelier, S., Courot, E., 2010. Biosynthesis, metabolism, molecular engineering, and biological functions of stilbene phytoalexins in plants. Biofactors 36, 331-341. https://doi.org/10.1002/ biof.108.
  • Jeandet, P., Douillet-Breuil, A.C., Bessis, R., Debord, S., Sbaghi, M., Adrian, M., 2002. Phytoalexins from the Vitaceae: biosynthesis, phytoalexin gene expression in transgenic plants, antifungal activity, and metabolism. J. Agric. Food Chem. 50, 2731-2741. https://doi.org/10.1021/jf011429s.
  • Jeong, W., Ahn, E.K., Oh, J.S., Hong, S.S., 2017. Caragasinin C: a new oligostilbene from the roots of Caragana sinica. J. Asian Nat. Prod. Res. 19, 1143-1147. https://doi.org/ 10.1080/10286020.2017.1302941.
  • Jin, Q., Han, X., Hong, S.S., Lee, C., Choe, S., Kim, Y.I., Hwang, B.Y., 2011. Antioxidative oligostilbenes from Caragana sinica. Bioorg. Med. Chem. Lett 22, 973-976. https:// doi.org/10.1016/j.bmcl.2011.12.012.
  • Kakorin, P.A., Tereshkina, O.I., Ramenskaya, G.V., 2018. Potential biological activity and chemical composition of Caragana jubata (Pall.) Poir. (Review). Pharm. Chem. J. 52, 531-535. https://doi.org/10.1007/s11094-018-1854-x.
  • Kaouadji, M., Agban, A., Mariotte, A.M., Michel, T., 2004. Lonchocarpene, a stilbene, and Lonchocarpusone, an isoflavone: two new pyranopolyphenols from Lonchocarpus nicou roots. J. Nat. Prod. 49, 281-285. https://doi.org/10.1021/np50044a013.
  • Kapetanovic, I.M., Muzzio, M., Huang, Z., Thompson, T.N., McCormick, D.L., 2011. Pharmacokinetics, oral bioavailability, and metabolic profile of resveratrol and its dimethylether analog, pterostilbene, in rats. Cancer Chemother. Pharmacol. 68, 593-601. https://doi.org/10.1007/s00280-010-1525-4.
  • Kataria, R., Khatkar, A., 2019. Resveratrol in various pockets: a review. Curr. Top. Med. Chem. 19, 116-122. https://doi.org/10.2174/1568026619666190301173958.
  • Katsuyama, Y., Funa, N., Miyahisa, I., Horinouchi, S., 2007. Synthesis of unnatural flavonoids and stilbenes by exploiting the plant biosynthetic pathway in Escherichia coli. Chem. Biol. 14, 613-621. https://doi.org/10.1016/j.chembiol.2007.05.004.
  • Kawabata, J., Ichikawa, S., Kurihara, H., Mizutani, J., 1989. Kobophenol A, a unique tetrastilbene from Carex kobomugi ohwi (Cyperaceae). Tetrahedron Lett. 30, 3785-3788. https://doi.org/10.1016/S0040-4039(01)80655-9.
  • Kawabata, J., Mishima, M., Kurihara, H., Mizutani, J., 1991. Kobophenol B, a tetrastilbene from Carex pumila. Phytochemistry 30, 645-647. https://doi.org/ 10.1016/0031-9422(91)83744-6.
  • Kawazoe, K., Shimogai, N., Takaishi, Y., Rao, K.S., Imakura, Y., 1997. Four stilbenes from Salacia lehmbachii. Phytochemistry 44, 1569-1573. https://doi.org/10.1016/S0031- 9422(96)00768-6.
  • Kemal, M., Wahba Khalil, S.K., Rao, N.G., Woolsey, N.F., 1979. Isolation and identification of a cannabinoid-like compound from Amorpha species. J. Nat. Prod. 42, 463-468. https://doi.org/10.1021/np50005a004.
  • Kerem, Z., Bilkis, I., Flaishman, M.A., Sivan, L., 2006. Antioxidant activity and inhibition of alpha-glucosidase by trans -resveratrol, piceid, and a novel trans -stilbene from the roots of Israeli Rumex bucephalophorus L. J. Agric. Food Chem. 54, 1243-1247. https://doi.org/10.1021/jf052436+.
  • Kershaw, J., Kim, K.H., 2017. The therapeutic potential of piceatannol, a natural stilbene, in metabolic diseases: a review. J. Med. Food 20, 427-438. https://doi.org/ 10.1089/jmf.2017.3916.
  • Keylor, M.H., Matsuura, B.S., Stephenson, C.R., 2015. Chemistry and biology of resveratrol-derived natural products. Chem. Rev. 115, 8976-9027. https://doi.org/ 10.1021/cr500689b.
  • Khan, M.A., Nabi, S.G., Prakash, S., Zaman, A., 1986. Pallidol, a resveratrol dimer from Cissus pallida. Phytochemistry 25, 1945-1948. https://doi.org/10.1016/S0031-9422 (00)81180-2.
  • Khawand, T., Courtois, A., Valls, J., Richard, T., Krisa, S., 2018. A review of dietary stilbenes: sources and bioavailability. Phytochemistry Rev. 17, 1007-1029. https:// doi.org/10.1007/s11101-018-9578-9.
  • Kim, H., Seo, K.H., Yokoyama, W., 2020. Chemistry of pterostilbene and its metabolic effects. J. Agric. Food Chem. 68, 12836-12841. https://doi.org/10.1021/acs. jafc.0c00070.
  • Kim, H.J., Chang, E.J., Bae, S.J., Shim, S.M., Park, H.D., Rhee, C.H., Choi, S.W., 2002. Cytotoxic and antimutagenic stilbenes from seeds of Paeonia lactiflora. Arch Pharm. Res. (Seoul) 25, 293-299. https://doi.org/10.1007/BF02976629.
  • Kimura, Y., Okuda, H., 2000. Effects of naturally occurring stilbene glucosides from medicinal plants and wine, on tumour growth and lung metastasis in Lewis lung carcinoma-bearing mice. J. Pharm. Pharmacol. 52, 1287-1295. https://doi.org/ 10.1211/0022357001777270.
  • Kiselev, K., Grigorchuk, V., Ogneva, Z., Suprun, A., Dubrovina, A., 2016. Stilbene biosynthesis in the needles of spruce Picea jezoensis. Phytochemistry 131, 57-67. https://doi.org/10.1016/j.phytochem.2016.08.011.
  • Kitanaka, S., Takido, M., Mizoue, K., Kondo, H., Nakaike, S., 1996. Oligomeric stilbenes from Caragana chamlagu LAMARK root. Chem. Pharm. Bull. 44, 565-567. https:// doi.org/10.1248/cpb.44.565.
  • Kloypan, C., Jeenapongsa, R., Sri-in, P., Chanta, S., Dokpuang, D., Tip-pyang, S., Surapinit, N., 2012. Stilbenoids from Gnetum macrostachyum attenuate human platelet aggregation and adhesion. Phytotherapy research : PTR 26, 1564-1568. https://doi.org/10.1002/ptr.4605.
  • Kosuru, R., Rai, U., Prakash, S., Singh, A., Singh, S., 2016. Promising therapeutic potential of pterostilbene and its mechanistic insight based on preclinical evidence. Eur. J. Pharmacol. 789, 229-243. https://doi.org/10.1016/j.ejphar.2016.07.046.
  • Ku, K.T., Huang, Y.L., Huang, Y.J., Chiou, W.F., 2008. Miyabenol A inhibits LPS-induced NO production via IKK/IkappaB inactivation in RAW 264.7 macrophages: possible involvement of the p38 and PI3K pathways. J. Agric. Food. Chem. 56, 8911-8918. https://doi.org/10.1021/jf8019369.
  • Kulanthaivel, P., Janzen, W.P., Ballas, L.M., Jiang, J.B., Hu, C.Q., Darges, J.W., Adams, L. M., 1995. Naturally occurring protein kinase C inhibitors; II. Isolation of oligomeric stilbenes from Caragana sinica. Planta Med. 61, 41-44. https://doi.org/10.1055/s- 2006-957996.
  • Azzolini, M., 2019. Pterostilbene improves cognitive performance in aged rats: an in vivo study. Cell. Physiol. Biochem. 52, 232-239. https://doi.org/10.33594/ 000000017.
  • Lam, S.H., Lee, S.S., 2010. Unusual stilbenoids and a stilbenolignan from seeds of Syagrus romanzoffiana. Phytochemistry 71, 792-797. https://doi.org/10.1016/j. phytochem.2010.01.013.
  • Langcake, P., Pryce, R.J., 1977. A new class of phytoalexins from grape vines. Experientia 33, 151-152. https://doi.org/10.1007/BF02124034.
  • Lee, S., Yoon, K.D., Lee, M., Cho, Y., Choi, G., Jang, H., Lee, C., 2016. Identification of a resveratrol tetramer as a potent inhibitor of hepatitis C virus helicase. Br. J. Pharmacol. 173, 19-211. https://doi.org/10.1111/bph.13358.
  • Lee, S.K., Lee, H.J., Min, H.Y., Park, E.J., Lee, K.M., Ahn, Y.H., Pyee, J.H., 2005. Antibacterial and antifungal activity of pinosylvin, a constituent of pine. Fitoterapia 76, 258-260. https://doi.org/10.1016/j.fitote.2004.12.004.
  • Lee, W., Ham, J., Kwon, H.C., Yoon, G., Bae, G.U., Kim, Y.K., Kim, S.N., 2015. Amorphastilbol exerts beneficial effects on glucose and lipid metabolism in mice consuming a high-fat-diet. Int. J. Mol. Med. 36, 527-533. https://doi.org/10.3892/ ijmm.2015.2227.
  • Lei, X., Zhou, Q., Li, W., Qin, G., Shen, X., Zhang, N., 2019. Stilbenoids from Leguminosae and their bioactivities. Med. Res. 3, 200004. https://doi.org/ 10.21127/yaoyimr20200004.
  • Li, B.J., Liu, Y., Gu, A.T., Zhang, Q., Chen, L., Wang, S.M., Wang, F., 2017. Two new stilbene trimers from Cynodon dactylon. Nat. Prod. Res. 31, 2479-2483. https://doi. org/10.1080/14786419.2017.1314281.
  • Li, D.D., Zhao, L.X., Mylonakis, E., Hu, G.H., Zou, Y., Huang, T.K., Jiang, Y.Y., 2014. In vitro and in vivo activities of pterostilbene against Candida albicans biofilms. Antimicrob. Agents Chemother. 58, 2344-2355. https://doi.org/10.1128/ AAC.01583-13.
  • Li, S.G., Huang, X.J., Zhong, Y.L., Li, M.M., Li, Y.L., Wang, Y., Ye, W.C., 2019. Stilbene glycoside oligomers from the roots of Polygonum multiflorum. Chem. Biodivers. 16, e1900192 https://doi.org/10.1002/cbdv.201900192.
  • Li, S.H., Niu, X.M., Zahn, S., Gershenzon, J., Weston, J., Schneider, B., 2008. Diastereomeric stilbene glucoside dimers from the bark of Norway spruce (Picea abies). Phytochemistry 69, 772-782. https://doi.org/10.1016/j. phytochem.2007.08.033.
  • Li, X.M., Lin, M., Wang, Y.H., Liu, X., 2004. Four new stilbenoids from the lianas of Gnetum montanum f. megalocarpum. Planta Med. 70, 160-165. https://doi.org/ 10.1055/s-2004-815494.
  • Li, Y.R., Li, S., Lin, C.C., 2018. Effect of resveratrol and pterostilbene on aging and longevity. Biofactors 44, 69-82. https://doi.org/10.1002/biof.1400.
  • Liang, Q.L., Lei, L.L., Cui, X., Zou, N.S., Duan, J.A., 2013. Bioactive cis-stilbenoids from the tubers of Scirpus yagara. Fitoterapia 84, 170-173. https://doi.org/10.1016/j. fitote.2012.11.012.
  • Licznerska, B., Szaefer, H., Wierzchowski, M., Mikstacka, R., Papierska, K., Baer- Dubowska, W., 2018. Evaluation of the effect of the new methoxy-stilbenes on expression of receptors and enzymes involved in estrogen synthesis in cancer breast cells. Mol. Cell. Biochem. 444, 53-62. https://doi.org/10.1007/s11010-017-3230-7.
  • Likhitwitayawuid, K., Sritularak, B., 2001. A new dimeric stilbene with tyrosinase inhibitiory activity from Artocarpus gomezianus. J. Nat. Prod. 64, 1457-1459. https://doi.org/10.1021/np0101806.
  • Likhtenshtein, G., 2009. Stilbenes: Applications in Chemistry, Life Sciences and Materials Science. John Wiley & Sons, Inc, New York.
  • Lin, C.N., Lu, C.M., 1993. Heterophylol, a phenolic compound with novel skeleton from Artocarpus heterophyllus. Tetrahedron Lett. 34, 8249-8250. https://doi.org/10.1016/ S0040-4039(00)61402-8.
  • Lin, H.W., Sun, M.X., Wang, Y.H., Yang, L.M., Yang, Y.R., Huang, N., Xiao, K., 2010. AntiHIV activities of the compounds isolated from Polygonum cuspidatum and Polygonum multiflorum. Planta Med. 76, 889-892. https://doi.org/10.1055/s-0029-1240796.
  • Ling, S., Xu, J.W., 2016. Biological activities of 2,3,5,4'-tetrahydroxystilbene-2-O -β- Dglucoside in antiaging and antiaging-related disease treatments. Oxid. Med. Cell. Longev. 2016, 4973239. https://doi.org/10.1155/2016/4973239.
  • Liu, A.L., Yang, F., Zhu, M., Zhou, D., Lin, M., Lee, S.M.Y., Du, G.H., 2010a. In vitro antiinfluenza viral activities of stilbenoids from the lianas of Gnetum pendulum. Planta Med. 76, 1874-1876. https://doi.org/10.1055/s-0030-1250030.
  • Lima, N., Andrade, J., Lima, K., Santos, F., Barison, A., Salom´e, K., Nunez, C., 2012. Chemical profile and biological activities of Deguelia duckeana A. M. G. Azevedo (Fabaceae). Nat. Prod. Res. 27, 425-432. https://doi.org/10.1080/ 14786419.2012.733387.
  • Liu, A.L., Yang, F., Zhu, M., Zhou, D., Lin, M., Lee, S.M., Du, G.H., 2010b. In vitro antiinfluenza viral activities of stilbenoids from the lianas of Gnetum pendulum. Planta Med. 76, 1874-1876. https://doi.org/10.1055/s-0030-1250030.
  • Liu, H.X., Lin, W.H., Yang, J.S., 2004. Oligomeric stilbenes from the root of C aragana stenophylla. Chem. Pharm. Bull. 52, 1339-1341. https://doi.org/10.1248/ cpb.52.1339.
  • Lobo ˆ, L., Silva, G., Freitas, M., Filho, A., Silva, M., Arruda, A., Arruda, M., 2009. Stilbenes from Deguelia rufescens var. urucu (Ducke) A. M. G. Azevedo leaves: effects on seed germination and plant growth. J. Braz. Chem. Soc. 21, 1838-1844. https://doi.org/ 10.1590/S0103-50532010001000007.
  • Luo, H.F., Zhang, L.P., Hu, C.Q., 2001. Five novel oligostilbenes from the roots of Caragana sinica. Tetrahedron 57, 4849-4854. https://doi.org/10.1016/S0040-4020 (01)00427-6.
  • Ma, D.Y., Hu, C.Q., 2008. Studies on chemical constituents from roots of Caragana sinica. Zhongguo Zhongyao Zazhi 33, 517-521.
  • Ma, D.Y., Luo, H.F., Hu, C.Q., 2004. Three stilbene tetramers from the roots of Caragana sinica. Chin. J. Chem. 22, 207-211. https://doi.org/10.1002/cjoc.20040220221.
  • Ma, F., Shen, W., Zhang, X., Li, M., Wang, Y., Zou, Y., Wang, H., 2016. Anti-HSV activity of Kuwanon X from mulberry leaves with genes expression inhibitory and HSV-1 induced NF-κB deactivated properties. Biol. Pharm. Bull. 39, 1667-1674. https:// doi.org/10.1248/bpb.b16-00401.
  • Ma, Z.J., Li, X., Li, N., Wang, J.H., 2002. Stilbenes from Sphaerophysa salsula. Fitoterapia 73, 313-315. https://doi.org/10.1016/S0367-326X(02)00074-6.
  • Madadi, N.R., Zong, H., Ketkar, A., Zheng, C., Penthala, N.R., Janganati, V., Crooks, P.A., 2015. Synthesis and evaluation of a series of resveratrol analogues as potent anticancer agents that target tubulin. Med. Chem. Comm. 6, 788-794. https://doi.org/ 10.1039/C4MD00478G.
  • Magalhtaes, A., Tozzi, A., Magalhtaes, E., Moraes, V., 2001. Prenylated flavonoids from Deguelia hatschbachii and their systematic significance in Deguelia. Phytochemistry 57, 77-89. https://doi.org/10.1016/S0031-9422(00)00509-4.
  • Majumder, P.L., Roychowdhury, M., Chakraborty, S., 1998. Thunalbene, a stilbene derivative from the orchid Thunia alba. Phytochemistry 49, 2375-2378. https://doi. org/10.1016/S0031-9422(98)00433-6.
  • Masek, A., Latos-Brozio, M., Chrzescijanska, E., Anna, P., 2019. Polyphenolic Profile and Antioxidant Activity of Juglans regia L. Leaves and Husk Extracts. Forests 10, 988. https://doi.org/10.3390/f10110988.
  • Yoshikawa, M., 2009. Antidiabetogenic constituents from the Thai traditional medicine Cotylelobium melanoxylon. Chem. Pharm. Bull. 57, 487-494. https://doi. org/10.1248/cpb.57.487.
  • Mattio, L.M., Catinella, G., Pinto, A., Dallavalle, S., 2020. Natural and nature-inspired stilbenoids as antiviral agents. Eur. J. Med. Chem. 202, 112541. https://doi.org/ 10.1016/j.ejmech.2020.112541.
  • McCormack, D., McFadden, D., 2012. Pterostilbene and cancer: current review. J. Surg. Res. 173, e53-61. https://doi.org/10.1016/j.jss.2011.09.054.
  • McCormack, D., McFadden, D., 2013. A review of pterostilbene antioxidant activity and disease modification. Oxid. Med. Cell. Longev. 2013, 575482. https://doi.org/ 10.1155/2013/575482.
  • McKay, D.L., Blumberg, J.B., 2007. Cranberries (Vaccinium macrocarpon) and cardiovascular disease risk factors. Nutr. Rev. 65, 490-502. https://doi.org/ 10.1111/j.1753-4887.2007.tb00273.x.
  • Meng, H.C., Zhu, S., Fan, Y.H., Ye, R., Hattori, M., Komatsu, K., Ma, C.M., 2020. Discovery of prenylated dihydrostilbenes in Glycyrrhiza uralensis leaves by UHPLC- MS using neutral loss scan. Ind. Crop. Prod. 152, 112557. https://doi.org/10.1016/j. indcrop.2020.112557.
  • Meng, Q., Niu, Y., Niu, X., Roubin, R.H., Hanrahan, J.R., 2009. Ethnobotany, phytochemistry and pharmacology of the genus Caragana used in traditional Chinese medicine. J. Ethnopharmacol. 124, 350-368. https://doi.org/10.1016/j. jep.2009.04.048.
  • Mikstacka, R., Stefanski ´, T., Ro´za Ë™nski ´, J., 2013. Tubulin-interactive stilbene derivatives as anticancer agents. Cell. Mol. Biol. Lett. 18, 368-397. https://doi.org/10.2478/ s11658-013-0094-z.
  • Miyaichi, Y., Nunomura, N., Kawata, Y., Kizu, H., Tomimori, T., Watanabe, T., Malla, K. J., 2006. Studies on nepalese crude drugs. XXVIII. Chemical constituents of Bhote Khair, the underground parts of Eskemukerjea megacarpum HARA. Chem. Pharm. Bull. 54, 136-138. https://doi.org/10.1248/cpb.54.136.
  • Moore, A., Beidler, J., Hong, M.Y., 2018. Resveratrol and depression in animal models: a systematic review of the biological mechanisms. Molecules 23, 2197. https://doi. org/10.3390/molecules23092197.
  • Moriyama, H., Moriyama, M., Ninomiya, K., Morikawa, T., Hayakawa, T., 2016. Inhibitory Effects of Oligostilbenoids from the Bark of Shorea roxburghii on Malignant Melanoma Cell Growth: Implications for Novel Topical Anticancer Candidates. Biol. Pharm. Bull. 39, 1675-1682. https://doi.org/10.1248/bpb.b16-00420.
  • Moses, T., Mehrshahi, P., Smith, A.G., Goossens, A., 2017. Synthetic biology approaches for the production of plant metabolites in unicellular organisms. J. Exp. Bot. 68, 4057-4074. https://doi.org/10.1093/jxb/erx119.
  • Muhammad, I., Li, X.C., Dunbar, D.C., ElSohly, M.A., Khan, I.A., 2001. Antimalarial (+)- trans-hexahydrodibenzopyran derivatives from Machaerium multiflorum. J. Nat. Prod. 64, 1322-1325. https://doi.org/10.1021/np0102861.
  • Muller, A.G., Sarker, S.D., Saleem, I.Y., Hutcheon, G.A., 2019. Delivery of natural phenolic compounds for the potential treatment of lung cancer. DARU J. Pharm. Sci. 27, 433-449. https://doi.org/10.1007/s40199-019-00267-2.
  • Na, M., Hoang, M., Njamen, D., Mbafor, J., Fomum, Z., Phuong, T., Oh, W., 2007. Inhibitory effect of 2-arylbenzofurans from Erythrina addisoniae on protein tyrosine phosphatase-1B. Bioorg. Med. Chem. Lett. 17, 3868-3871. https://doi.org/10.1016/ j.bmcl.2007.05.005.
  • Nakajima, K., Taguchi, H., Endo, T., Yosioka, I., 1978. The constituents of Scirpus fluviatilis (TORR.) A. GRAY. I. : the structures of two new hydroxystilbene dimers. scirpusin A and B. Chem. Pharm. Bull. 26, 3050-3057. https://doi.org/10.1248/ cpb.26.3050.
  • Nassra, M., Krisa, S., Papastamoulis, Y., Kapche, G.D., Bisson, J., Andr´e, C., Konsman, J., Schmitter, J.M., M´erillon, J.M., Waffo-T´eguo, P., 2013. Inhibitory activity of plant stilbenoids against nitric oxide production by lipopolysaccharide-activated microglia. Planta Med. 79 https://doi.org/10.1055/s-0032-1328651.
  • Ngoupayo, J., Tabopda, T., Ali, M., Ngadjui, B., Lacaille-Dubois, M.-A., 2015. Antioxidant stilbenoid and flavanonol from stem of Erythrophleum suaveolens (Guill. & Perr.). Magn. Reson. Chem. 53 https://doi.org/10.1002/mrc.4253.
  • Nguyen, C.B., Kotturi, H., Waris, G., Mohammed, A., Chandrakesan, P., May, R., Rao, C. V., 2016. (Z)-3,5,4'-Trimethoxystilbene limits hepatitis C and cancer pathophysiology by blocking microtubule dynamics and cell-cycle progression. Cancer Res. 76, 4887-4896. https://doi.org/10.1158/0008-5472.CAN-15-2722.
  • Niesen, D.B., Hessler, C., Seeram, N.P., 2013. Beyond resveratrol: a review of natural stilbenoids identified from 2009-2013. J. Berry Res. 3, 181-196. https://doi.org/ 10.3233/JBR-130062.
  • Nigro, P., Bloise, E., Turco, M., Skhirtladze, A., Montoro, P., Pizza, C., Belisario, M., 2007. Antiproliferative and pro-apoptotic activity of novel phenolic derivatives of resveratrol. Life Sci. 81, 873-883. https://doi.org/10.1016/j.lfs.2007.07.010.
  • Obeid, M.A., Gany, S.A.S., Gray, A.I., Young, L., Igoli, J.O., Ferro, V.A., 2020. Niosomeencapsulated balanocarpol: compound isolation, characterisation, and cytotoxicity evaluation against human breast and ovarian cancer cell lines. Nanotechnology 31, 195101. https://doi.org/10.1088/1361-6528/ab6d9c.
  • Oh, M., Park, S., Song, J.H., Ko, H.J., Kim, S.H., 2020. Chemical components from the twigs of Caesalpinia latisiliqua and their antiviral activity. J. Nat. Med. 74, 26-33. https://doi.org/10.1007/s11418-019-01335-2.
  • Ohyama, M., Ichise, M., Tanaka, T., Iinuma, M., Burandt, C.L., 1996. Davidiol D, first naturally occurring resveratrol pentamer isolated from Sophora davidii. Tetrahedron Lett. 37, 5155-5158. https://doi.org/10.1016/0040-4039(96)01078-7.
  • Oniki, K., Kawakami, T., Nakashima, A., Miyata, K., Watanabe, T., Fujikawa, H., Shuto, T., 2020. Melinjo seed extract increases adiponectin multimerization in physiological and pathological conditions. Sci. Rep. 10, 4313. https://doi.org/ 10.1038/s41598-020-61148-2.
  • Orsini, F., Pelizzoni, F., Verotta, L., Aburjai, T., Rogers, C.B., 1997. Isolation, synthesis, and antiplatelet aggregation activity of resveratrol 3-O -β- D-glucopyranoside and related compounds. J. Nat. Prod. 60, 1082-1087. https://doi.org/10.1021/ np970069t.
  • Ozdemir ¨, F., Akalin, G., Sen, M., Onder ¨, N.I., Iscan, A., Kutlu, H.M., Incesu, Z., 2014. Towards novel anti-tumor strategies for hepatic cancer: ε- viniferin in combination with vincristine displays pharmacodynamic synergy at lower doses in HepG2 cells. Omics 18, 324-334. https://doi.org/10.1089/omi.2013.0045.
  • Pacher, T., Seger, C., Engelmeier, D., Vajrodaya, S., Hofer, O., Greger, H., 2002. Antifungal stilbenoids from Stemona collinsae. J. Nat. Prod. 65, 820-827. https://doi. org/10.1021/np0105073.
  • Paddon, C.J., Keasling, J.D., 2014. Semi-synthetic artemisinin: a model for the use of synthetic biology in pharmaceutical development. Nat. Rev. Microbiol. 12, 355-367. https://doi.org/10.1038/nrmicro3240.
  • Pan, L., Zhang, T., Yu, M., Shi, M., Jia, X., Jia, X., Zou, Z., 2021. Bioactive-guided isolation and identification of oligostilbenes as anti-rheumatoid arthritis constituents from the roots of Caragana stenophylla. J. Ethnopharmacol. 280, 114134. https://doi. org/10.1016/j.jep.2021.114134.
  • Pan, M.H., Wu, J.C., Ho, C.T., Lai, C.S., 2018. Antiobesity molecular mechanisms of action: resveratrol and pterostilbene. Biofactors 44, 50-60. https://doi.org/ 10.1002/biof.1409.
  • Papastamoulis, Y., Richard, T., Nassra, M., Badoc, A., Krisa, S., Harakat, D., Waffo-Teguo, P., 2014. Viniphenol A, a complex resveratrol hexamer from Vitis vinifera stalks: structural elucidation and protective effects against amyloid-β- induced toxicity in PC12 cells. J. Nat. Prod. 77, 213-217. https://doi.org/10.1021/ np4005294.
  • Pari, L., Satheesh, M.A., 2006. Effect of pterostilbene on hepatic key enzymes of glucose metabolism in streptozotocin-and nicotinamide-induced diabetic rats. Life Sci. 79, 641-645. https://doi.org/10.1016/j.lfs.2006.02.036.
  • Park, W.H., Lee, S.J., Moon, H.I., 2008. Antimalarial activity of a new stilbene glycoside from Parthenocissus tricuspidata in mice. Antimicrob. Agents Chemother. 52, 3451-3453. https://doi.org/10.1128/AAC.00562-08.
  • Peng, Q.Q., Wang, K., Cheng, K.J., Yang, H.G., Qiu, J.G., Zhang, W.J., Wang, W., 2017. Caragaphenol a induces reactive oxygen species related apoptosis in human gastric cancer cells. Am. J. Transl. Res. 9, 3804-3815.
  • Pereira, A.C., Arruda, M.S., da Silva, E.A., da Silva, M.N., Lemos, V.S., Cortes, S.F., 2012. Inhibition of α- glucosidase and hypoglycemic effect of stilbenes from the Amazonian plant Deguelia rufescens var. urucu (Ducke) A. M. G. Azevedo (Leguminosae). Planta Med. 78, 36-38. https://pubmed.ncbi.nlm.nih.gov/21928165/.
  • P´eresse, T., J´ez´equel, G., Allard, P.M., Pham, V.C., Huong, D.T.M., Blanchard, F., Litaudon, M., 2017. Cytotoxic Prenylated Stilbenes Isolated from Macaranga tanarius. J. Nat. Prod. 80, 2684-2691. https://doi.org/10.1021/acs. jnatprod.7b00409.
  • Pettit, G.R., Singh, S.B., Hamel, E., Lin, C.M., Alberts, D.S., Garcia-Kendall, D., 1989. Isolation and structure of the strong cell growth and tubulin inhibitor combretastatin A-4. Experientia 45, 209-211. https://doi.org/10.1007/BF01954881.
  • Pflieger, A., Teguo, P.W., Papastamoulis, Y., Chaignepain, S., Subra, F., Munir, S., Andreola, M.L., 2013. Natural stilbenoids isolated from grapevine exhibiting inhibitory effects against HIV-1 integrase and eukaryote MOS1 transposase in vitro activities. PLoS One 8, e81184. https://doi.org/10.1371/journal.pone.0081184.
  • Piacente, S., Pizza, C., Oleszek, W., 2005. Saponins and phenolics of Yucca schidigera roezl: chemistry and bioactivity. Phytochemistry Rev. 4, 177-190. https://doi.org/ 10.1007/s11101-005-1234-5.
  • Pieku´s-Slomka, N., Mikstacka, R., Ronowicz, J., Sobiak, S., 2019. Hybrid cis -stilbene molecules: novel anticancer agents. Int. J. Mol. Sci. 20, 1300. https://doi.org/ 10.3390/ijms20061300.
  • Plumed-Ferrer, C., V¨akev¨ainen, K., Komulainen, H., Rautiainen, M., Smeds, A., Raitanen, J.E., von Wright, A., 2013. The antimicrobial effects of wood-associated polyphenols on food pathogens and spoilage organisms. Int. J. Food Microbiol. 164, 99-107. https://doi.org/10.1016/j.ijfoodmicro.2013.04.001.
  • Pogaˇcnik, L., Bergant, T., Skrt, M., Ulrih, N.P., Viktorov´a, J., Ruml, T., 2020. In Vitro comparison of the bioactivities of Japanese and Bohemian knotweed ethanol extracts. Foods 9, 544. https://doi.org/10.3390/foods9050544.
  • Punganuru, S.R., Madala, H.R., Venugopal, S.N., Samala, R., Mikelis, C., Srivenugopal, K. S., 2016. Design and synthesis of a C7-aryl piperlongumine derivative with potent antimicrotubule and mutant p53-reactivating properties. Eur. J. Med. Chem. 107, 233-244. https://doi.org/10.1016/j.ejmech.2015.10.052.
  • Pussa, T., Raudsepp, P., Kuzina, K., Raal, A., 2009. Polyphenolic composition of roots and petioles of. Rheum rhaponticum L. Phytochem. Anal. 20, 98-103. https://doi.org/ 10.1002/pca.1102.
  • Qian, J., Hou, M., Wu, X., Dai, C., Sun, J., Dong, L., 2020. A review on the extraction, purification, detection, and pharmacological effects of 2,3,5,4'-tetrahydroxystilbene- 2-O -β- D-glucoside from Polygonum multiflorum. Biomed. Pharmacother. 124, 109923. https://doi.org/10.1016/j.biopha.2020.109923.
  • Radwan, M.M., Ross, S.A., Slade, D., Ahmed, S.A., Zulfiqar, F., Elsohly, M.A., 2008. Isolation and characterization of new Cannabis constituents from a high potency variety. Planta Med. 74, 267-272. https://doi.org/10.1055/s-2008-1034311.
  • Rakotobe, L., Mambu, L., Deville, A., Dubost, L., Jeannoda, V., Rakoto, D., Bodo, B., 2010. Clerodane and 19-norclerodane diterpenoids from the tubers of Dioscorea antaly. Phytochemistry 71, 1007-1013. https://doi.org/10.1016/j. phytochem.2010.03.014.
  • Ratz-Lyko, A., Arct, J., 2019. Resveratrol as an active ingredient for cosmetic and dermatological applications: a review. J. Cosmet. Laser Ther. 21, 84-90. https://doi. org/10.1080/14764172.2018.1469767.
  • Rauf, A., Imran, M., Butt, M.S., Nadeem, M., Peters, D.G., Mubarak, M.S., 2018. Resveratrol as an anti-cancer agent: a review. Crit. Rev. Food Sci. Nutr. 58, 1428-1447. https://doi.org/10.1080/10408398.2016.1263597.
  • Remsberg, C.M., Y´anez t, J.A., Ohgami, Y., Vega-Villa, K.R., Rimando, A.M., Davies, N.M., 2008. Pharmacometrics of pterostilbene: preclinical pharmacokinetics and metabolism, anticancer, antiinflammatory, antioxidant and analgesic activity. Phytother Res. 22, 169-179. https://doi.org/10.1002/ptr.2277.
  • Rimando, A.M., Kalt, W., Magee, J.B., Dewey, J., Ballington, J.R., 2004. Resveratrol, pterostilbene, and piceatannol in Vaccinium berries. J. Agric. Food Chem. 52, 4713-4719. https://doi.org/10.1021/jf040095e.
  • Rivi`ere, C., Pawlus, A.D., M´erillon, J.M., 2012. Natural stilbenoids: distribution in the plant kingdom and chemotaxonomic interest in Vitaceae. Nat. Prod. Rep. 29, 1317-1333. https://doi.org/10.1039/C2NP20049J.
  • Ruan, B.F., Huang, X.F., Ding, H., Xu, C., Ge, H.M., Zhu, H.L., Tan, R.X., 2006. Synthesis and cytotoxic evaluation of a series of resveratrol derivatives. Chem. Biodivers. 3, 975-981. https://doi.org/10.1002/cbdv.200690106.
  • Ruan, B.F., Lu, X., Tang, J.F., Wei, Y., Wang, X.L., Zhang, Y.B., Zhu, H.L., 2011. Synthesis, biological evaluation, and molecular docking studies of resveratrol derivatives possessing chalcone moiety as potential antitubulin agents. Bioorg. Med. Chem. 19, 2688-2695. https://doi.org/10.1016/j.bmc.2011.03.001.
  • Ruan, C.J., Si, J.Y., Zhang, L., Chen, D.H., Du, G.H., Sun, L., 2009. Protective effect of stilbenes containing extract-fraction from Cajanus cajan L. on Aβ25-35-induced cognitive deficits in mice. Neurosci. Lett. 467, 159-163. https://doi.org/10.1016/j. neulet.2009.10.029.
  • Ryu, H.W., Song, H., Shin, I.-S., Cho, B.O., Jeong, S., Kim, D.-Y., Oh, S.-R., 2015. Suffruticosol A isolated from Paeonia lactiflora seedcases attenuates airway inflammation in mice induced by cigarette smoke and LPS exposure. J. Funct. Foods 17, 774-784. https://doi.org/10.1016/j.jff.2015.06.036.
  • Sahidin Hakim, E.H., Juliawaty, L.D., Syah, Y.M., bin Din, L., Ghisalberti, E.L., Achmad, S.A., 2005. Cytotoxic properties of oligostilbenoids from the tree barks of Hopea dryobalanoides. Z. Naturforsch. C. J. Biosci. 60, 723-727. https://doi.org/ 10.1515/znc-2005-9-1011.
  • Sahidin, S., Wahyuni, W., Malaka, M., Imran, I., 2017. Antibacterial and cytotoxic potencies of stilbene oligomers from stem barks of baoti (Dryobalanops lanceolata) growing in Kendari, Indonesia. Asian J. Pharm. Clin. Res. 10, 139. https://doi.org/ 10.22159/ajpcr.2017.v10i8.18664.
  • Sakagami, Y., Sawabe, A., Komemushi, S., All, Z., Tanaka, T., Iliya, I., Iinuma, M., 2007. Antibacterial activity of stilbene oligomers against vancomycin-resistant Enterococci (VRE) and methicillin-resistant Staphylococcus aureus (MRSA) and their synergism with antibiotics. Biocontrol. Sci. 12, 7-14. https://doi.org/10.4265/bio.12.7.
  • Sales, J.M., Resurreccion, A.V., 2014. Resveratrol in peanuts. Crit. Rev. Food Sci. Nutr. 54, 734-770. https://doi.org/10.1080/10408398.2011.606928.
  • Santos, A.A., Brito, V.B.M., Castro Silva, J.W., Alencar-Filho, E.B., 2019. Quantitative structure-activity relationship (QSAR) study of resveratrol-oxadiazole hybrids with antiproliferative activity in breast cancer cells. Rev. Virtual Quim. 11, 475-487. https://doi.org/10.21577/1984-6835.20190036.
  • Sarker, S.D., Whiting, P., Dinan, L., ˇSik, V., Rees, H.H., 1999. Identification and ecdysteroid antagonist activity of three resveratrol trimers (suffruticosols A, B and C) from Paeonia suffruticosa. Tetrahedron 55, 513-524. https://doi.org/10.1016/ S0040-4020(98)01049-7.
  • Sasikumar, P., Lekshmy, K., Sini, S., Prabha, B., Kumar, N.A., Sivan, V.V., Radhakrishnan, K.V., 2019. Isolation and characterization of resveratrol oligomers from the stem bark of Hopea ponga (Dennst.) Mabb. And their antidiabetic effect by modulation of digestive enzymes, protein glycation and glucose uptake in L6 myocytes. J. Ethnopharmacol 236, 196-204. https://doi.org/10.1016/j. jep.2019.01.046.
  • Schnee, S., Queiroz, E.F., Voinesco, F., Marcourt, L., Dubuis, P.H., Wolfender, J.L., Gindro, K., 2013. Vitis vinifera canes, a new source of antifungal compounds against Plasmopara viticola, Erysiphe necator, and Botrytis cinerea. J. Agric. Food Chem. 61, 5459-5467. https://doi.org/10.1021/jf4010252.
  • Schneider, Y., Chabert, P., Stutzmann, J., Coelho, D., Fougerousse, A., Goss´e, F., Raul, F., 2003. Resveratrol analog (Z)-3,5,4'-trimethoxystilbene is a potent anti-mitotic drug inhibiting tubulin polymerization. Int. J. Cancer 107, 189-196. https://doi.org/ 10.1002/ijc.11344.
  • Segun, P.A., Ogbole, O.O., Akinleye, T.E., Faleye, T.O., Adeniji, A.J., 2019. In vitro antienteroviral activity of stilbenoids isolated from the leaves of Macaranga barteri. Nat. Prod. Res. 35, 1909-1913. https://doi.org/10.1080/14786419.2019.1644505.
  • Sethi, M.L., Taneja, S.C., Agarwal, S.G., Dhar, K.L., Atal, C.K., 1980. Isoflavones and stilbenes from Juniperus macropoda. Phytochemistry 19, 1831-1832. https://doi. org/10.1016/S0031-9422(00)83822-4.
  • Seyed, M.A., Jantan, I., Bukhari, S.N., Vijayaraghavan, K., 2016. A Comprehensive review on the chemotherapeutic potential of piceatannol for cancer treatment, with mechanistic insights. J. Agric. Food Chem. 64, 725-737. https://doi.org/10.1021/ acs.jafc.5b05993.
  • Shaito, A., Posadino, A.M., Younes, N., Hasan, H., 2020. Potential adverse effects of resveratrol: a literature review. Int. J. Mol. Sci. 21, 2084. https://doi.org/10.3390/ ijms21062084.
  • Shao, L., Zhao, S.J., Cui, T.B., Liu, Z.Y., Zhao, W., 2012. 2,3,5,4'- tetrahydroxystilbene-2- O -β- D-glycoside biosynthesis by suspension cells cultures of Polygonum multiflorum Thunb and production enhancement by methyl jasmonate and salicylic acid. Molecules 17, 2240-2247. https://doi.org/10.3390/molecules17022240.
  • Shen, J., Zhou, Q., Li, P., Wang, Z., Liu, S., He, C., Xiao, P., 2017. Update on phytochemistry and pharmacology of naturally occurring resveratrol oligomers. Molecules 22, 2050. https://doi.org/10.3390/molecules22122050.
  • Shen, T., Wang, X.N., Lou, H.X., 2009. Natural stilbenes: an overview. Nat. Prod. Rep. 26, 916-935. https://doi.org/10.1039/B905960A.
  • Shen, T., Xie, C.F., Wang, X.N., Lou, H.X., 2013. Stilbenoids. In: Ramawat, K.G., M´erillon, J.M. (Eds.), Natural Products: Phytochemistry, Botany and Metabolism of Alkaloids, Phenolics and Terpenes. Springer Berlin Heidelberg, pp. 1901-1949.
  • Sheng, C., Peng, W., Chen, Z., Cao, Y., Gong, W., Xia, Z.A., Wang, Z., 2016. Impact of 2,3,5,4'-tetrahydroxystilbene-2-O -β- D-glucoside on cognitive deficits in animal models of Alzheimer' s disease: a systematic review. BMC Compl. Alternative Med. 16, 320. https://doi.org/10.1186/s12906-016-1313-8.
  • Shikishima, Y., Takaishi, Y., Honda, G., Ito, M., Takeda, Y., Kodzhimatov, O.K., Ashurmetov, O., 2001. Phenylbutanoids and stilbene derivatives of. Rheum maximowiczii. Phytochemistry 56, 377-381. https://doi.org/10.1016/S0031-9422 (00)00370-8.
  • Shrestha, A., Pandey, R.P., Sohng, J.K., 2019. Biosynthesis of resveratrol and piceatannol in engineered microbial strains: achievements and perspectives. Appl. Microbiol. Biotechnol. 103, 2959-2972. https://doi.org/10.1007/s00253-019-09672-8.
  • Siemann, D.W., Chaplin, D.J., Walicke, P.A., 2009. A review and update of the current status of the vasculature-disabling agent combretastatin-A4 phosphate (CA4P). Expet Opin. Invest. Drugs 18, 189-197. https://doi.org/10.1517/ 13543780802691068.
  • Nakamura, C., 2012. Resveratrol-derived stilbenoids and biological activity evaluation of seed extracts of Cenchrus echinatus L. Nat. Prod. Res. 26, 865-868. https://doi.org/10.1080/14786419.2011.561538.
  • Singh, R.K., Kumar, S., Prasad, D., Bhardwaj, T., 2018. Therapeutic journery of nitrogen mustard as alkylating anticancer agents: historic to future perspectives. Eur. J. Med. Chem. 151, 401-433. https://doi.org/10.1016/j.ejmech.2018.04.001.
  • Sobolev, V.S., Khan, S.I., Tabanca, N., Wedge, D.E., Manly, S.P., Cutler, S.J., Gloer, J.B., 2011. Biological activity of peanut (Arachis hypogaea) phytoalexins and selected natural and synthetic stilbenoids. J. Agric. Food Chem. 59, 1673-1682. https://doi. org/10.1021/jf104742n.
  • Son, I., Chung, I.M., Lee, S.J., Moon, H.I., 2007. Antiplasmodial activity of novel stilbene derivatives isolated from Parthenocissus tricuspidata from South Korea. Parasitol. Res. 101, 237-241. https://doi.org/10.1007/s00436-006-0454-y.
  • Song, I., Lim, H., Chun, S., Lee, S.B., Huh, J., Oh, D.-C., Hong, S., 2021. First total synthesis of gaylussacin and its stilbene derivatives. J. Nat. Prod. 84, 1366-1372. https://doi.org/10.1021/acs.jnatprod.1c00173.
  • Spath, E., Schlager, J., 1940. On the constituents of 'Red Sandalwood' [Pterocarpus santalinus]. 2: the constitution of pterostilbene. Ber. d. Deutsch. Chem. Gesellsch. 73, 881-884.
  • Speicher, A., Schoeneborn, R., 1997. 3,4-dihydroxy-3'-methoxystilbene, the first monomeric stilbene derivative from bryophytes. Phytochemistry 45, 1613-1615. https://doi.org/10.1016/S0031-9422(97)00241-0.
  • Sri-in, P., Sichaem, J., Siripong, P., Tip-pyang, S., 2011. Macrostachyols A-D, new oligostilbenoids from the roots of Gnetum macrostachyum. Fitoterapia 82, 460-465. https://doi.org/10.1016/j.fitote.2010.12.008.
  • Su, D., Cheng, Y., Liu, M., Liu, D., Cui, H., Zhang, B., Mei, Q., 2013. Comparision of piceid and resveratrol in antioxidation and antiproliferation activities in vitro. PLoS One 8, e54505-e54505. https://doi.org/10.1371/journal.pone.0054505.
  • Sun, B., Ribes, A.M., Leandro, M.C., Belchior, A.P., Spranger, M.I., 2006. Stilbenes: quantitative extraction from grape skins, contribution of grape solids to wine and variation during wine maturation. Anal. Chim. Acta 563, 382-390. https://doi.org/ 10.1016/j.aca.2005.12.002.
  • Sun, L.L., Wang, M., Zhang, H.J., You, G.J., Liu, Y.N., Ren, X.L., Deng, Y.R., 2018. The influence of polysaccharides from Ophiopogon japonicus on 2,3,5,4'-tetrahydroxystilbene-2-O -β- D-glucoside about biopharmaceutical properties in vitro and pharmacokinetics in vivo. Int. J. Biol. Macromol. 119, 677-682. https://doi.org/ 10.1016/j.ijbiomac.2018.07.179.
  • Syah, Y.M., Ghisalberti, E.L., 2010. Phenolic derivatives with an irregular sesquiterpenyl side chain from Macaranga pruinosa. Nat. Prod. Commun. 5, 219-222. https://doi. org/10.1177/1934578X1000500209.
  • Szkudelski, T., Szkudelska, K., 2011. Anti-diabetic effects of resveratrol. Ann. N. Y. Acad. Sci. 1215, 34-39. https://doi.org/10.1111/j.1749-6632.2010.05844.x.
  • Tanaka, T., Iliya, I., Ito, T., Furusawa, M., Nakaya, K.I., Iinuma, M., Hirai, K., 2001. Stilbenoids in lianas of Gnetum parvifolium. Chem. Pharm. Bull. 49, 858-862. https:// doi.org/10.1248/cpb.49.858.
  • Tanaka, T., Murata, H., Iliya, I., Furasawa, M., Ito, T., Nakaya, K.I., Iinuma, M., 2004. New resveratrol dimer glucosides and trimers in stem and root of Welwitschia mirabilis. Heterocycles 63.
  • Tani, H., Koshino, H., Taniguchi, T., Yoshimatsu, M., Hikami, S., Takahashi, S., 2020. Structural studies on stilbene oligomers isolated from the seeds of Melinjo (Gnetum gnemon L.). ACS Omega 5, 12245-12250. https://doi.org/10.1021/ acsomega.0c00910.
  • Tang, Y.L., Chan, S.W., 2014. A review of the pharmacological effects of piceatannol on cardiovascular diseases. Phytother Res. 28, 1581-1588. https://doi.org/10.1002/ ptr.5185.
  • Tastekin, B., Pelit, A., Polat, S., Tuli, A., Sencar, L., Alparslan, M.M., Daglioglu, Y.K., 2018. Therapeutic potential of pterostilbene and resveratrol on biomechanic, biochemical, and histological parameters in streptozotocin-induced diabetic rats. Evid. Based Complement Alternat. Med. 2018 https://doi.org/10.1155/2018/ 9012352.
  • Teka, T., Wang, L., Gao, J., Mou, J., Pan, G., Yu, H., Han, L., 2021. Polygonum multiflorum: recent updates on newly isolated compounds, potential hepatotoxic compounds and their mechanisms. J. Ethnopharmacol. 271, 113864. https://doi. org/10.1016/j.jep.2021.113864.
  • Tian, B., Liu, J., 2019. Resveratrol: a review of plant sources, synthesis, stability, modification and food application. J. Sci. Food Agric. 100, 1392-1404. https://doi. org/10.1002/jsfa.10152.
  • Tou, J.C., 2015. Evaluating resveratrol as a therapeutic bone agent: preclinical evidence from rat models of osteoporosis. Ann. N. Y. Acad. Sci. 1348, 75-85. https://doi.org/ 10.1111/nyas.12840.
  • Tran, H.H.T., Nguyen, M.C., Le, H.T., Nguyen, T.L., Pham, T.B., Chau, V.M., Nguyen, T. D., 2014. Inhibitors of α- glucosidase and α- amylase from Cyperus rotundus. Pharm. Biol. 52, 74-77. https://doi.org/10.3109/13880209.2013.814692.
  • Triputra, M.A., Yanuar, A., 2018. Analysis of compounds isolated from Gnetum gnemon L. seeds as potential ACE inhibitors through molecular docking and molecular dynamics simulations. J. Young Pharm. 10, S32-S39. https://doi.org/10.5530/ jyp.2018.2s.7.
  • Tsai, J.H., Hsu, L.S., Lin, C.L., Hong, H.M., Pan, M.H., Way, T.D., Chen, W.J., 2013. 3,5,4'-Trimethoxystilbene, a natural methoxylated analog of resveratrol, inhibits breast cancer cell invasiveness by downregulation of PI3K/Akt and Wnt/β- catenin signaling cascades and reversal of epithelial-mesenchymal transition. Toxicol. Appl. Pharmacol. 272, 746-756. https://doi.org/10.1016/j.taap.2013.07.019.
  • Tsai, C.F., Wang, K.T., Chen, L.G., Lee, C.J., Tseng, S.H., Wang, C.C., 2014. Anti-inflammatory effects of Vitis thunbergii var. taiwaniana on knee damage associated with arthritis. J. Med. Food 17, 479-486. https://doi.org/10.1089/jmf.2013.2914.
  • Turbyville, T.J., Gursel, D.B., Tuskan, R.G., Walrath, J.C., Lipschultz, C.A., Lockett, S.J., Reilly, K.M., 2010. Schweinfurthin A selectively inhibits proliferation and Rho signaling in glioma and neurofibromatosis type 1 tumor cells in a NF1-GRDdependent manner. Mol. Cancer Ther. 9, 1234-1243. https://doi.org/10.1158/ 1535-7163.mct-09-0834.
  • Tyunin, A.P., Nityagovsky, N.N., Grigorchuk, V.P., Kiselev, K.V., 2018. Stilbene content and expression of stilbene synthase genes in cell cultures of Vitis amurensis treated with cinnamic and caffeic acids. Biotechnol. Appl. Biochem. 65, 150-155. https:// doi.org/10.1002/bab.1564.
  • Utkina, N.K., Kulesh, N.I., 2012. Antioxidant activity of polyphenols and polyphenol complex from the far-eastern tree Maackia amurensis. Pharm. Chem. J. 46, 488-491. https://doi.org/10.1007/s11094-012-0831-z.
  • Vitaglione, P., Sforza, S., Del Rio, D., 2012. Occurrence, bioavailability, and metabolism of resveratrol. In: Spencer, J.P.E., Crozier, A. (Eds.), Flavonoids and Related Compounds. CRC Press, Boca Raton, pp. 167-182.
  • Wada, S.I., Yasui, Y., Hitomi, T., Tanaka, R., 2007. Structures and radical-scavenging activities of phenolic constituents from the bark of Picea jezoensis var. jezoensis. J. Nat. Prod. 70, 1605-1610. https://doi.org/10.1021/np070104o.
  • Wada, S.I., Yasui, Y., Tokuda, H., Tanaka, R., 2009. Anti-tumor-initiating effects of phenolic compounds isolated from the bark of Picea jezoensis var. jezoensis. Bioorg. Med. Chem. 17, 6414-6421. https://doi.org/10.1016/j.bmc.2009.07.016.
  • Wang, D.G., Liu, W.Y., Chen, G.T., 2013. A simple method for the isolation and purification of resveratrol from Polygonum cuspidatum. J. Pharm. Anal. 3, 241-247. https://doi.org/10.1016/j.jpha.2012.12.001.
  • Wang, J., Guleria, S., Koffas, M.A.G., Yan, Y., 2016. Microbial production of value-added nutraceuticals. Curr. Opin. Biotechnol. 37, 97-104. https://doi.org/10.1016/j. copbio.2015.11.003.
  • Wang, J.W., Liang, J.Y., Li, L., 2006. Chemical constituents from Gnetum parvifolium. Chin. J. Nat. Med. 4, 432-434.
  • Wang, S., Dayou, M., Hu, C., 2005. Three new compounds from the aerial parts of Caragana sinica. Helv. Chim. Acta 88, 2315-2321. https://doi.org/10.1002/ hlca.200590166.
  • Wang, S.G., Ma, D.Y., Hu, C.Q., 2004. Two new oligostilbenes from Caragana sinica. J. Asian Nat. Prod. Res. 6, 241-248. https://doi.org/10.1080/ 10286020310001653309.
  • Wang, Y.D., Wu, J.C., Yuan, Y.J., 2007. Salicylic acid-induced taxol production and isopentenyl pyrophosphate biosynthesis in suspension cultures of Taxus chinensis var. mairei. Cell Biol. Int. 31, 1179-1183. https://doi.org/10.1016/j.cellbi.2007.03.038.
  • Wang, Y.H., Huang, K.S., Lin, M., 2001. Four new stilbene dimers from the lianas of Gnetum Hainanense. J. Asian Nat. Prod. Res. 3, 169-176. https://doi.org/10.1080/ 10286020108041387.
  • Wang, Y.M., Fan, M.Y., Li, J., Wang, Z.M., Gao, H.M., 2014. Homoisoflavanones and stilbenes from fresh bulb of Scilla scilloides. Zhongguo Zhongyao Zazhi 39, 3788-3793.
  • Wang, Y.Q., Tan, J.J., Tan, C.H., Jiang, S.H., Zhu, D.Y., 2003. Halophilols A and B, two new stilbenes from Iris halophila. Planta Med. 69, 779-781. https://doi.org/ 10.1055/s-2003-42792.
  • Wu, G.Y., Zhang, X., Guo, X.Y., Huo, L.Q., Liu, H.X., Shen, X.L., Tan, H.B., 2019. Prenylated stilbenes and flavonoids from the leaves of Cajanus cajan. Chin. J. Nat. Med. 17, 381-386. https://doi.org/10.1016/S1875-5364(19)30044-5.
  • Wu, J., Li, B., Xiao, W., Hu, J., Xie, J., Yuan, J., Wang, L., 2020. Longistylin A, a natural stilbene isolated from the leaves of Cajanus cajan, exhibits significant anti-MRSA activity. Int. J. Antimicrob. Agents 55, 105821. https://doi.org/10.1016/j. ijantimicag.2019.10.002.
  • Wu, X., Li, Q., Feng, Y., Ji, Q., 2018. Antitumor research of the active ingredients from traditional Chinese medical plant Polygonum cuspidatum. Evid. Based Complement Alternat. Med. 2018, 2313021. https://doi.org/10.1155/2018/2313021.
  • Xiang, T., Uno, T., Ogino, F., Ai, C., Duo, J., Sankawa, U., 2005. Antioxidant constituents of Caragana tibetica. Chem. Pharm. Bull. 53, 1204-1206. https://doi.org/10.1248/ cpb.53.1204.
  • Xiao, K., Xuan, L., Xu, Y., Bai, D., 2000. Stilbene glycoside sulfates from Polygonum cuspidatum. J. Nat. Prod. 63, 1373-1376. https://doi.org/10.1021/np000086+.
  • Xu, F., Matsuda, H., Hata, H., Sugawara, K., Nakamura, S., Yoshikawa, M., 2009. Structures of new flavonoids and benzofuran-type stilbene and degranulation inhibitors of rat basophilic leukemia cells from the Brazilian herbal medicine Cissus sicyoides. Chem. Pharm. Bull. 57, 1089-1095. https://doi.org/10.1248/cpb.57.1089.
  • Yamada, M., Hayashi, K.I., Hayashi, H., Ikeda, S., Hoshino, T., Tsutsui, K., Nozaki, H., 2006a. Stilbenoids of Kobresia nepalensis (Cyperaceae) exhibiting DNA topoisomerase II inhibition. Phytochemistry 67, 307-313. https://doi.org/10.1016/ j.phytochem.2005.11.001.
  • Yamada, M., Hayashi, K.I., Hayashi, H., Tsuji, R., Kakumoto, K., Ikeda, S., Nozaki, H., 2006b. Nepalensinols D-G, new resveratrol oligomers from Kobresia nepalensis (Cyperaceae) as potent inhibitors of DNA topoisomerase II. Chem. Pharm. Bull. 54, 354-358. https://doi.org/10.1248/cpb.54.354.
  • Yan, J., Guo, Y., Wang, Y., Mao, F., Huang, L., Li, X., 2015. Design, synthesis, and biological evaluation of benzoselenazole-stilbene hybrids as multi-target-directed anti-cancer agents. Eur. J. Med. Chem. 95, 220-229. https://doi.org/10.1016/j. ejmech.2015.03.030.
  • Yan, Z., Liang, J., Niu, F., Shen, Y., Liu, J., 2021. Enhanced production of pterostilbene in Escherichia coli through directed evolution and host strain engineering. Front. Microbiol. 12, 710405. https://doi.org/10.3389/fmicb.2021.710405.
  • Yang, G.X., Hu, C.Q., 2003. A novel stilbenolignan from Caragana rosea Turcz. Chin. J. Org. Chem. 23, 873-876. https://doi.org/10.1016/S0144-8617(03)00049-3.
  • Yang, G.X., Qi, J.B., Cheng, K.J., Hu, C.Q., 2007. Anti-HIV chemical constituents of aerial parts of Caragana rosea. Acta Pharm. Sin. 42, 179-182.
  • Yang, G.X., Zhou, J.T., Li, Y.Z., Hu, C.Q., 2005. Anti-HIV bioactive stilbene dimers of Caragana rosea. Planta Med. 71, 569-571. https://doi.org/10.1055/s-2005-864162.
  • Yang, J.B., Wang, A.G., Ji, T.F., Su, Y.L., 2014. Two new oligostilbenes from the stem of Parthenocissus quinquefolia. J. Asian Nat. Prod. Res. 16, 275-280. https://doi.org/ 10.1080/10286020.2013.877451.
  • Yang, S., Tang, Z., Hu, C., Zhang, D., Shen, N., Yu, H., Chen, X., 2019. Selectively potentiating hypoxia levels by combretastatin A4 nanomedicine: toward highly enhanced hypoxia-activated prodrug tirapazamine therapy for metastatic tumors. Adv. Mater. 31, 1805955. https://doi.org/10.1002/adma.201805955.
  • Yao, C.S., Lin, M., Liu, X., Wang, Y.H., 2005. Stilbene derivatives from Gnetum cleistostachyum. J. Asian Nat. Prod. Res. 7, 131-137. https://doi.org/10.1080/ 10286020310001625102.
  • Yao, C.S., Lin, M., Wang, L., 2006. Isolation and biomimetic synthesis of antiinflammatory stilbenolignans from Gnetum cleistostachyum. Chem. Pharm. Bull. 54, 1053-1057. https://doi.org/10.1248/cpb.54.1053.
  • Yu, M.H., Zhao, T., Yan, G.R., Yang, H.X., Wang, H.Y., Hou, A.J., 2012. New isoprenylated flavones and stilbene derivative from Artocarpus hypargyreus. Chem. Biodivers. 9, 394-402. https://doi.org/10.1002/cbdv.201100072.
  • Yu, Y., Guo, D., Li, G., Yang, Y., Zhang, G., Li, S., Liang, Z., 2019. The grapevine R2R3-
  • type MYB transcription factor VdMYB1 positively regulates defense responses by activating the stilbene synthase gene 2 (VdSTS2). BMC Plant Biol. 19, 1-15. https:// doi.org/10.1186/s12870-019-1993-6.
  • Yuan, S., Yi, X., Johnston, T.G., Alper, H.S., 2020. De novo resvertrol production through modular engineering of an Escherichia coli-Saccharomyces cerevisiae co-culture.
  • Zhang, H., Matsuda, H., Yamashita, C., Nakamura, S., Yoshikawa, M., 2009. Hydrangeic acid from the processed leaves of Hydrangea macrophylla var. thunbergii as a new type of anti-diabetic compound. Eur. J. Pharmacol. 606, 255-261. https://doi.org/ 10.1016/j.ejphar.2009.01.005.
  • Zhang, N.L., Zhu, Y., Huang, R.M., Fu, M.Q., Su, Z.W., Cai, J.Z., Qiu, S.X., 2012. Two new stilbenoids from Cajanus cajan. Z. Naturforsch. B Chem. Sci. 67b, 1314-1318. https://doi.org/10.5560/znb.2012-0184.
  • Zhao, X., Xu, J., Song, X., Jia, R., Yin, Z., Cheng, A., Yin, L., 2016. Antiviral effect of resveratrol in ducklings infected with virulent duck enteritis virus. Antivir. Res. 130, 93-100. https://doi.org/10.1016/j.antiviral.2016.03.014.
  • Zhao, X.J., Yu, H.W., Yang, Y.Z., Wu, W.Y., Chen, T.Y., Jia, K.K., Kong, L.D., 2018. Polydatin prevents fructose-induced liver inflammation and lipid deposition through increasing miR-200a to regulate Keap1/Nrf2 pathway. Redox. Biol. 18, 124-137. https://doi.org/10.1016/j.redox.2018.07.002.
  • Zhong, B., Yonezawa, T., Zhong, Y., Hasegawa, M., 2010. The position of gnetales among seed plants: overcoming pitfalls of chloroplast phylogenomics. Mol. Biol. Evol. 27, 2855-2863. https://doi.org/10.1093/molbev/msq170.
  • Zhou, S., Wang, Y.H., Lin, M., 2002. Gnetuhainin S, a new resveratrol dimer from Gnetum hainanense. Chin. Chem. Lett. 13, 549-550. https://doi.org/10.1021/cm021152r.
  • Ziaullah, Rupasinghe, H.P.V., 2015. Application of NMR Spectroscopy in Plant
  • Tekleab Teka is a PhD student at Tianjin University of Traditional Chinese Medicine with Dr. Lifeng Han and Prof. Xiaohui Yan. He received his bachelor degree in Mekelle University in Pharmacy and his Master' s degree in Addis Ababa University, Ethiopia in 2013. His Current research mainly focuses on the elucidation of the biosynthetic pathways of plant natural products in the Yan and Han lab.