Published June 28, 2023 | Version v1
Journal article Restricted

A heavyweight early whale pushes the boundaries of vertebrate morphology

Description

Bianucci, Giovanni, Lambert, Olivier, Urbina, Mario, Merella, Marco, Collareta, Alberto, Bennion, Rebecca, Salas-Gismondi, Rodolfo, Benites-Palomino, Aldo, Post, Klaas, Muizon, Christian de, Bosio, Giulia, Celma, Claudio Di, Malinverno, Elisa, Pierantoni, Pietro Paolo, Villa1, Igor Maria, Amson1, Eli (2023): A heavyweight early whale pushes the boundaries of vertebrate morphology. Nature 620: 824-829, DOI: 10.1038/s41586-023-06381-1

Files

Restricted

The record is publicly accessible, but files are restricted to users with access.

Linked records

Additional details

Identifiers

LSID
urn:lsid:plazi.org:pub:FF968957FFD96D13FF93FF9D174EFD65
URL
http://publication.plazi.org/id/FF968957FFD96D13FF93FF9D174EFD65

References

  • 1. Fordyce, R.E. in Encyclopedia of Marine Mammals 3rd edn (eds Wursig,B. et al.) 180-185 (Academic,2018).
  • 2. Gingerich, P.D.Evolution of whales from land to sea. Proc.Am.Philos.Soc.156, 309-323 (2012).
  • 3. Voss, M., Antar,M. S.M., Zalmout, I. S. & Gingerich, P.D. Stomach contents of the archaeocete Basilosaurus isis: apex predator in oceans of the late Eocene. PLoS ONE 14, e0209021 (2019).
  • 4. Slater, G.J., Goldbogen, J. A.& Pyenson,N.D.Independent evolution of baleen whale gigantism linked to Plio-Pleistocene ocean dynamics. Proc.R.Soc. B 284, 20170546 (2017).
  • 5. Buffrenil, V.de, Canoville, A., D'Anastasio, R.& Domning, D.P.Evolution of sirenian pachyosteosclerosis, a model-case for the study of bone structure in aquatic tetrapods. J.Mamm.Evol. 17, 101-120 (2010).
  • 6. Clack,J. A.Gaining Ground: The Origin and Evolution of Tetrapods (Indiana Univ.Press, 2012).
  • 7. Thewissen,J. G.M., Cooper, L.N., Clementz, M.T., Bajpai, S. & Tiwari, B.N.Whales originated from aquatic artiodactyls in the Eocene epoch of India. Nature 450, 1190-1194 (2007).
  • 8. Burin,G., Park,T., James, T.D., Slater, G. J.& Cooper, N. The dynamic adaptive landscape of cetacean body size.Curr. Biol.https://doi.org/10.1016/j.cub.2023.03.014 (2023).
  • 9. Sander, P.M.et al.Early giant reveals faster evolution of large body size in ichthyosaurs than in cetaceans.Science 374, eabf5787 (2021).
  • 10. Houssaye, A., Martin Sander, P.& Klein, N. Adaptive patterns in aquatic amniote bone microanatomy-more complex than previously thought. Integr.Comp.Biol.56, 1349-1369 (2016).
  • 11. Cooper, L.N.et al.Aquatic habits of cetacean ancestors: integrating bone microanatomy and stable isotopes. Integr.Comp.Biol.56, 1370-1384 (2016).
  • 12. Di Celma, C.et al. Towards deciphering the Cenozoic evolution of the East Pisco Basin (southern Peru).J.Maps 18, 397-412 (2022).
  • 13. Houssaye, A., Tafforeau,P., Muizon, Cde & Gingerich, P. D.Transition of Eocene whales from land to sea: evidence from bone microstructure. PLoS ONE 10, e0118409 (2015).
  • 14. Dewaele, L.et al.Hypersalinity drives convergent bone mass increases in Miocene marine mammals from the Paratethys.Curr.Biol.32, 248-255 (2022).
  • 15. Gingerich, P.D., Amane, A.& Zouhri,S. Skull and partial skeleton of a new pachycetine genus (Cetacea, Basilosauridae) from the Aridal Formation,Bartonian middle Eocene, of southwestern Morocco.PLoS ONE 17, e0276110 (2022).
  • 16. Kellogg, R.A review of the Archaeoceti.Carn. Inst.Wash. 482, 1-366 (1936).
  • 17. Uhen, M. D.Form,function, and anatomy of Dorudon atrox (Mammalia,Cetacea):an archaeocete from the middle to late Eocene of Egypt.Pap.Paleontol.34, 1-222 (2004).
  • 18. Gingerich, P.D.Stromerius nidensis, new archaeocete (Mammalia, Cetacea) from the upper Eocene Qasr el-Sagha Formation, Fayum,Egypt.Contrib.Mus.Paleontol.Univ. Michigan 31, 363-378 (2007).
  • 19. Moran, M. M. et al. Intervertebral and epiphyseal fusion in the postnatal ontogeny of cetaceans and terrestrial mammals.J.Mamm.Evol.22, 93-109 (2015).
  • 20. Martinez-Caceres,M., Lambert,O. & Muizon,C. de. The anatomy and phylogenetic affinities of Cynthiacetus peruvianus, a large Dorudon -like basilosaurid (Cetacea, Mammalia) from the late Eocene of Peru. Geodiversitas 39, 7-163 (2017).
  • 21. Anne, J., Tumarkin-Deratzian, A.R., Cuff, H. J., Orsini,P.& Grandstaff, B.Acromegaly in a hog badger (Arctonyx collaris). Proc.Acad. Nat.Sci. Phila.167, 49-56 (2019).
  • 22. Gresky,J., Sokiranski, R., Witzmann,F.& Petiti, E.The oldest case of osteopetrosis in a human skeleton: exploring the history of rare diseases.Lancet Diabetes Endocrinol. 8, 806-808 (2020).
  • 23. Van Benenden, P.-J. & Gervais, P.Osteographie des Cetaces (Arthus Bertrand, 1880).
  • the archaeocetes (Mammalia: Cetacea). J.Vertebr.Paleontol.10, 455-466 (1990).
  • 25. Amson,E., Billet, G. & Muizon, C. de. Evolutionary adaptation to aquatic lifestyle in extinct sloths can lead to systemic alteration of bone structure.Proc.R. Soc.B 285, 20180270 (2018).
  • 26. Domning, D. P. & Buffrenil, V.de. Hydrostasis in the Sirenia: quantitative data and functional interpretations.Mar.Mammal Sci.7, 331-368 (1991).
  • 27. Gingerich,P.D.Body weight and relative brain size (encephalization) in Eocene Archaeoceti (Cetacea).J.Mamm. Evol.23, 17-31 (2016).
  • 28. Lockyer, C.Body weights of some species of large whales.ICES J.Mar.Sci. 36, 259-273 (1976).
  • 29. Taylor,M. A.Functional significance of bone ballastin in the evolution of buoyancy control strategies by aquatic tetrapods.Hist. Biol.14, 15-31 (2000).
  • 30. Houssaye, A.'Pachyostosis' in aquatic amniotes:a review.Integr. Zool.4, 325-340 (2009).
  • (eds Mazin,J. & Buffrenil,V.) 289-310 (Dr Friedrich Pfeil, 2001).
  • 32. Wall,W.P.The correlation between high limb-bone density and aquatic habits in recent mammals.J.Paleontol.57, 197-207 (1983).
  • 33. Clementz, M.T., Goswami, A., Gingerich, P.D.& Koch, P.L.Isotopic records from early whales and sea cows:contrasting patterns of ecological transition.J.Vertebr. Paleontol. 26, 355-370 (2006).
  • 34. Gingerich,P.D., Antar,M.S.M.& Zalmout, I. S. Aegicetus gehennae, a new late Eocene protocetid (Cetacea, Archaeoceti) from Wadi Al Hitan, Egypt, and the transition to tail-powered swimming in whales.PLoS ONE 14, e0230596 (2019).
  • 35. Gingerich,P.D., Smith,B. H.& Simons, E. L.Hind limbs of Eocene Basilosaurus: evidence of feet in whales. Science 249, 154-157 (1990).
  • 36. Buchholtz, E.A.in The Emergence of Whales (ed Thewissen, J.G.M.) 325-351 (Springer New York,1998).
  • 37. Kojeszewski,T.& Fish, F.E.Swimming kinematics of the Florida manatee (Trichechus manatus latirostris): hydrodynamic analysis of an undulatory mammalian swimmer. J.Exp. Biol. 210, 2411-2418 (2007).
  • 38. Fish, F.E.Comparative kinematics and hydrodynamics of odontocete cetaceans: morphological and ecological correlates with swimming performance.J.Exp.Biol.201, 2867-2877 (1998).
  • 39. Molnar, J.L., Pierce,S. E., Bhullar,B.-A.S., Turner, A.H.& Hutchinson, J.R. Morphological and functional changes in the vertebral column with increasing aquatic adaptation in crocodylomorphs.R.Soc. Open Sci.2, 150439 (2015).
  • 40. Gingerich,P.D.Land-to-sea transition in early whales: evolution of Eocene Archaeoceti (Cetacea) in relation to skeletal proportions and locomotion of living semiaquatic mammals.Paleobiology 29, 429-454 (2003).
  • 41. Gutarra, S. et al. Effects of body plan evolution on the hydrodynamic drag and energy requirements of swimming in ichthyosaurs. Proc.R.Soc. B 286, 20182786 (2019).
  • 42. Wang,W., Shang, Q., Cheng, L., Wu, X.C.& Li,C. Ancestral body plan and adaptive radiation of sauropterygian marine reptiles.iScience 25, 105635 (2022).
  • 43. Verberk, W.C. E.P.et al.Universal metabolic constraints shape the evolutionary ecology of diving in animals. Proc.R.Soc. B 287, 20200488 (2020).
  • 44. Lovegrove,B. G.& Mowoe,M. O. The evolution of mammal body sizes: responses to Cenozoic climate change in North American mammals.J.Evol.Biol.26, 1317-1329 (2013).
  • 45. Baker,J., Meade, A., Pagel, M.& Venditti,C. Adaptive evolution toward larger size in mammals.Proc. Natl Acad. Sci. USA 112, 5093-5098 (2015).
  • 46. Saarinen,J. et al. Patterns of maximum body size evolution in Cenozoic land mammals: eco-evolutionary processes and abiotic forcing.Proc.R.Soc. B 281, 20132049 (2014).
  • 47. Price, S. A.& Hopkins,S. S. B.The macroevolutionary relationship between diet and body mass across mammals. Biol.J.Linn.Soc. 115, 173-184 (2015).
  • 48. Vermeij,G.J. Shifting sources of productivity in the coastal marine tropics during the Cenozoic era.Proc. R.Soc.B 278, 2362-2368 (2011).
  • 49. Perch-Nielsen,K.in Plankton Stratigraphy (eds Bolli, H. M. et al.) 427-554 (Cambridge Univ.Press, 1985).
  • 50. Young, J.R., Bown,P.R. & Lees, J.A. Nannotax 3 http://www.mikrotax.org/Nannotax3 (International Nannoplankton Association, 2022).
  • 51. Martini, E. Standard Tertiary and Quaternary calcareous nannoplankton zonation.In Proc. 2nd International Conference Planktonic Microfossils (ed. Farinacci, A.) Vol.2, 739-785 (Tecnoscienza, 1971).
  • 52. Agnini,C. et al. Biozonation and biochronology of Paleogene calcareous nannofossils from low and middle latitudes. Newsl.Stratigr.47, 131-181 (2014).
  • 53. Blott,S. J. & Pye,K.GRADISTAT:a grain size distribution and statistics package for the analysis of unconsolidated sediments.Earth Surf.Process.Landf.26, 1237-1248 (2001).
  • 54. Bosio,G.et al.Tephrochronology and chronostratigraphy of the Miocene Chilcatay and Pisco formations (East Pisco Basin, Peru).Newsl.Stratigr.53, 213-247 (2020).
  • 55. Gillet, A., Frederich, B.& Parmentier, E. Divergent evolutionary morphology of the axial skeleton as a potential key innovation in modern cetaceans. Proc.R.Soc. B 286, 20191771 (2019).
  • 56. R Core Team.R: A Language and Environment for Statistical Computing https://www. r-project.org/ (2023).
  • 57. Wickham, H.ggplot2:elegant graphics for data analysis https://ggplot2.tidyverse.org (2016).
  • 58. Padian, K.& Lamm, E.-T.Bone Histology of Fossil Tetrapods: Advancing Methods, Analysis, and Interpretation 285 (Univ.California Press, 2013).
  • 59. Stein, K.& Sander, P.M.in Methods in Fossil Preparation: Proceedings of the First Annual Fossil Preparation and Collections Symposium (eds Brown, M.A.et al.) 69-80 (Petrified Forest National Park, 2009).
  • 60. Schneider, C. A., Rasband, W.S. & Eliceiri, K.W.NIH Image to ImageJ:25 years of image analysis.Nat.Methods 9, 671-675 (2012).
  • 61. Schindelin, J. et al. Fiji:an open-source platform for biological-image analysis.Nat. Methods 9, 676-682 (2012).
  • 62. Canoville, A., Buffrenil, V.de & Laurin, M. Microanatomical diversity of amniote ribs:an exploratory quantitative study.Biol.J.Linn.Soc.118, 706-733 (2016).
  • 63. Hayashi, S.et al. Bone inner structure suggests increasing aquatic adaptations in Desmostylia (Mammalia,Afrotheria).PLoS ONE 8, e59146 (2013).
  • 64. Amson, E. & Bibi,F.Differing effects of size and lifestyle on bone structure in mammals. BMC Biol. 19, 87 (2021).
  • 65. Dumont,M.et al. Inner architecture of vertebral centra in terrestrial and aquatic mammals: a two-dimensional comparative study.J.Morphol.274, 570-584 (2013).
  • 66. Surowiec,R. K., Allen,M. R.& Wallace, J. M. Bone hydration:how we can evaluate it, what can it tell us, and is it an effective therapeutic target? Bone Rep.16, 101161 (2022).
  • 67. Buffrenil,V.de, Sire, J.-Y.& Schoevaert, D.Comparaison de la structure et du volume squelettiques entre un delphinide (Delphinus delphis L.) et un mammifere terrestre (Panthera leo L.).Can.J.Zool.64, 1750-1756 (1986).
  • 68. Buffrenil,V.de & Schoevaert, D. Donnees quantitatives et observations histologiques sur la pachyostose du squelette du dugong, Dugong dugon (Muller) (Sirenia, Dugongidae). Can.J.Zool.67, 2107-2119 (1989).
  • 69. Tacutu, R.et al. Human Ageing Genomic Resources:integrated databases and tools for the biology and genetics of ageing. Nucleic Acids Res.41, D1027-D1033 (2013).
  • 70. Prange, H.D., Anderson,J. F. & Rahn, H.Scaling of skeletal mass to body mass in birds and mammals. Am. Nat.113, 103-122 (1979).
  • 71. Buffrenil, V.de, Collet, A.& Pascal,M.Ontogenetic development of skeletal weight in a small delphinid, Delphinus delphis (Cetacea, Odontoceti).Zoomorphology 105, 336-344 (1985).
  • 72. Buffrenil, V.de. Contribution a l'Etude des Specialisations de la Structure Osseuse des Mammiferes Marins. PhD thesis (Univ.Paris,1990).
  • 73. Robineau, D.& Buffrenil, V.de. Nouvelles donnees sur la masse du squelette chez les grands cetaces (Mammalia, Cetacea). Can. J.Zool. 71, 828-834 (1993).
  • 74. Pinheiro, J., Bates,D., DebRoy,S., Sarkar,D.& R Core Team. nlme:linear and nonlinear mixed effects models.R package v. 3.1-162 (CRAN, 2016).
  • 75. Paradis, E., Claude, J.& Strimmer, K.APE:analyses of phylogenetics and evolution in R language.Bioinformatics 20, 289-290 (2004).
  • 76. Upham, N.S., Esselstyn, J. A.& Jetz, W.Inferring the mammal tree:species-level sets of phylogenies for questions in ecology, evolution, and conservation.PLoS Biol. 17, e3000494 (2019).
  • 77. Lefcheck, J. S. piecewiseSEM:piecewise structural equation modelling in R for ecology, evolution, and systematics.Methods Ecol.Evol. 7, 573-579 (2016).
  • 78. Garnier,S. et al.viridis(Lite)-Colorblind-Friendly Color Maps for R https://doi.org/10.5281/ zenodo.4679424 (2023).
  • 79. Blender Online Community. Blender-a 3D Modelling and Rendering Package http://www. blender.org (2018).
  • 80. Bianucci,G.et al.3D models related to the publication:a heavyweight early whale pushes the boundaries of vertebrate morphology Giovanni.MorphoMuseuM https:// doi.org/10.18563/journal.m3.187 (2023).
  • 81. Long, J. H., Pabst, D.A., Shepherd, W.R.& McLellan, W.A.Locomotor design of dolphin vertebral columns:bending mechanics and morphology of Delphinus delphis. J.Exp. Biol.200, 65-81 (1997).
  • 82. Travis, R.B., Gonzales, G. & Pardo, A. in Circum-Pacific Energy and Mineral Resources (eds Halbouty, M.et al.) 331-338 (American Association of Petroleum Geologists, 1976).
  • 83. Thornburg, T.& Kulm, L.D. Sedimentary basins of the Peru continental margin: structure, stratigraphy,and Cenozoic tectonics from 6°S to 16°S latitude.Mem.Geol.Soc.Am.154, 393-422 (1981).
  • 84. Malinverno, E.et al.Biostratigraphic overview and paleoclimatic-paleoceanographic implications of the middle-upper Eocene deposits from the Ica River Valley (East Pisco Basin, Peru).Palaeogeogr. Palaeoclimatol.Palaeoecol.578, 110567 (2021).
  • 85. Bianucci,G.& Collareta,A.An overview of the fossil record of cetaceans from the East Pisco Basin (Peru).Boll.Soc.Paleontol.Ital.61, 19-60 (2022).
  • 86. Bosio, G. et al. Ultrastructure, composition, and 87Sr/86Sr dating of shark teeth from lower Miocene sediments of southwestern Peru.J.South Am.Earth Sci.118, 103909 (2022).
  • 87. Collareta, A. et al. A rhinopristiform sawfish (genus Pristis) from the middle Eocene (Lutetian) of southern Peru and its regional implications.Carnets Geol. 20, 91-105 (2020).