Published February 28, 2022
| Version v1
Journal article
Restricted
Sesquiterpenoids and furan derivatives from the Orychophragmus violaceus (L.) O.E. Schulz endophytic fungus Irpex lacteus OV38
- 1. , Huan Jiang & , Bing Sun & , Zhen-Nan Wang & , Ai-Qun Jia & School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China & , Huan Jiang & * & School of Pharmaceutical Sciences, Engineering Research Center for Utilization of Tropical Polysaccharide Resources, Ministry of Education, Hainan University, Haikou, 570228, China
Description
Luo, Huai-Zhi, Jiang, Huan, Sun, Bing, Wang, Zhen-Nan, Jia, Ai-Qun (2022): Sesquiterpenoids and furan derivatives from the Orychophragmus violaceus (L.) O.E. Schulz endophytic fungus Irpex lacteus OV38. Phytochemistry (112996) 194: 1-9, DOI: 10.1016/j.phytochem.2021.112996, URL: http://dx.doi.org/10.1016/j.phytochem.2021.112996
Files
Linked records
Additional details
Identifiers
- LSID
- urn:lsid:plazi.org:pub:CF42215CFFD7FFDFFF96FFE10829FFB6
References
- Ancheeva, E., Daletos, G., Proksch, P., 2020. Bioactive secondary metabolites from endophytic fungi. Curr. Med. Chem. 27, 1836-1854. https://doi.org/10.2174/ 0929867326666190916144709.
- Ayer, W.A., Browne, L.M., 1981. Terpenoid metabolites of mushrooms and related basidiomycetes. Tetrahedron 37, 2199-2248. https://doi.org/10.1016/S0040-4020 (01)97979-7.
- Ayer, W.A., Cruz, E.R., 1993. The tremulanes, a new group of sesquiterpenes from the aspen rotting fungus Phellinus tremulae. J. Org. Chem. 58, 7529-7534. https://doi. org/10.1021/jo00078a035.
- Bruhn, T., Schaumloffel, A., Hemberger, Y., Bringmann, G., 2013. SpecDis: quantifying the comparison of calculated and experimental electronic circular dichroism spectra. Chirality 25, 243-249. https://doi.org/10.1002/chir.22138.
- Calcul, L., Waterman, C., Ma, W.S., Lebar, M.D., Harter, C., Mutka, T., Morton, L., Maignan, P., Van Olphen, A., Kyle, D.E., Vrijmoed, L., Pang, K.L., Pearce, C., Baker, B.J., 2013. Screening mangrove endophytic fungi for antimalarial natural products. Mar. Drugs 11, 5036-5050. https://doi.org/10.3390/md11125036.
- Chen, H.P., Ji, X., Li, Z.H., Feng, T., Liu, J.K., 2020a. Irlactane and tremulane sesquiterpenes from the cultures of the medicinal fungus Irpex lacteus HFG1102. Nat. Prod. Bioprospect. 10, 89-100. https://doi.org/10.1007/s13659-020-00239-z.
- Chen, Y., Zhang, L., Zou, G., Li, C., Yang, W., Liu, H., She, Z., 2020b. Anti-inflammatory activities of alkaloids from the mangrove endophytic fungus Phomopsis sp. SYSUQYP-23. Bioorg. Chem. 97, 103712. https://doi.org/10.1016/j.bioorg.2020.103712.
- Chen, L.L., Wang, P., Wang, H., Gai, C.J., Guo, Z.K., Dai, H.F., Mei, W.L., 2016. Study on the secondary metabolites from the endophytic fungus Coriolopsis sp. J5 of Ceriops tagal and their biological activities. Mar. Drugs. Chinese. J. 35, 2. https://doi.org/ 10.13400/j.cnki.cjmd.2016.02.002.
- Ding, J.H., Feng, T., Cui, B.K., Wei, K., Li, Z.H., Liu, J.K., 2013. Novel sesquiterpenoids from cultures of the basidiomycete Irpex lacteus. Tetrahedron Lett. 54, 2651-2654. https://doi.org/10.1021/acs.jnatprod.9b01177.
- Ding, J.H., Li, Z.H., Feng, T., Liu, J.K., 2018. Tremulane sesquiterpenes from cultures of the basidiomycete Irpex lacteus. Fitoterapia 125, 245-248. https://doi.org/10.1016/ j.fitote.2017.12.001.
- Ding, J.H., Li, Z.H., Feng, T., Liu, J.K., 2019. A new tremulane sesquiterpenoid from the fungus Irpex lacteus. Nat. Prod. Res. 33, 316-320. https://doi.org/10.1080/ 14786419.2018.1448816.
- Duan, X.X., Qin, D., Song, H.C., Gao, T.C., Zuo, S.H., Yan, X., Wang, J.Q., Ding, X., Di, Y. T., Dong, J.Y., 2019. Irpexlacte A-D, four new bioactive metabolites of endophytic fungus Irpex lacteus DR10-1 from the waterlogging tolerant plant Distylium chinense. Phytochemistry Lett 32, 151-156. https://doi.org/10.1016/j.phytol.2019.06.001.
- Guo, Z., Li, X., Zhang, L., Feng, Z., Deng, Z., He, H., Zou, K., 2016. Cytotoxic tremulanes and 5,6-secotremulanes, four new sesquiterpenoids from a plant-associated fungus X1-2. Nat. Prod. Res. 30, 2582-2589. https://doi.org/10.1080/ 14786419.2015.1135140.
- Hanwell, M.D., Curtis, D.E., Lonie, D.C., Vandermeersch, T., Zurek, E., Hutchison, G.R., 2012. Avogadro: an advanced semantic chemical editor, visualization, and analysis platform. ChemInform 4 (17). https://doi.org/10.1186/1758-2946-4-17.
- Huang, Y., Zhang, S.B., Chen, H.P., Zhao, Z.Z., Li, Z.H., Feng, T., Liu, J.K., 2019. Daedaleanols A and B, two new sesquiterpenes from cultures of the basidiomycete Daedalea incana. Nat. Prod. Res. 33, 74-79. https://doi.org/10.1080/ 14786419.2018.1434641.
- Liu, L.Y., Li, Z.H., Si, J., Dong, Z.J., Liu, J.K., 2013. Two new sesquiterpenoids from the fungus Ceriporia alachuana. J. Asian Nat. Prod. Res. 15, 300-304. https://doi.org/ 10.1080/10286020.2013.763798.
- Luo, H.Z., Zhou, J.W., Sun, B., Jiang, H., Tang, S., Jia, A.Q., 2021. Inhibitory effect of norharmane on Serratia marcescens NJ01 quorum sensing-mediated virulence factors and biofilm formation. Biofouling 37, 145-160. https://doi.org/10.1080/ 08927014.2021.1874942.
- Neuhaus, G.F., Loesgen, S., 2021. Antibacterial drimane sesquiterpenes from Aspergillus ustus. J. Nat. Prod. 84, 37-45. https://doi.org/10.1021/acs.jnatprod.0c00910.
- Qin, S., Xing, K., Jiang, J.H., Xu, L.H., Li, W.J., 2011. Biodiversity, bioactive natural products and biotechnological potential of plant-associated endophytic actinobacteria. Appl. Microbiol. Biotechnol. 89, 457-473. https://doi.org/10.1007/ s00253-010-2923-6.
- Siridechakorn, I., Yue, Z., Mittraphab, Y., Lei, X., Pudhom, K., 2017. Identification of spirobisnaphthalene derivatives with anti-tumor activities from the endophytic fungus Rhytidhysteron rufulum AS21B. Bioorg. Med. Chem. 25, 2878-2882. https:// doi.org/10.1016/j.bmc.2017.02.054.
- Tang, G.H., Zhang, Y., Yuan, C.M., Li, Y., Gu, Y.C., Di, Y.T., Wang, Y.H., Zuo, G.Y., Li, S. F., Li, S.L., He, H.P., Hao, X.J., 2012. Trigohowilols A-G, degraded diterpenoids from the stems of Trigonostemon howii. J. Nat. Prod. 75, 1962-1966. https://doi.org/ 10.1021/np3006315.
- Tang, Y., Zhao, Z.Z., Feng, T., Li, Z.H., Chen, H.P., Liu, J.K., 2019. Triterpenes with unusual modifications from the fruiting bodies of the medicinal fungus Irpex lacteus. Phytochemistry 162, 21-28. https://doi.org/10.1016/j.phytochem.2019.02.017.
- Wang, M., Du, J.X., Yang, H.X., Dai, Q., Liu, Y.P., He, J., Wang, Y., Li, Z.H., Feng, T., Liu, J.K., 2020. Sesquiterpenoids from cultures of the basidiomycetes Irpex lacteus. J. Nat. Prod. 83, 1524-1531. https://doi.org/10.1021/acs.jnatprod.9b01177.
- Wang, M., Li, Z.H., Isaka, M., Liu, J.K., Feng, T., 2021. Furan derivatives and polyketides from the fungus Irpex lacteus. Nat. Prod. Bioprospect. 11, 215-222. https://doi.org/ 10.1007/s13659-020-00282-w.
- Wang, P., Yu, J.H., Zhu, K., Wang, Y., Cheng, Z.Q., Jiang, C.S., Dai, J.G., Wu, J., Zhang, H., 2018. Phenolic bisabolane sesquiterpenoids from a Thai mangrove endophytic fungus, Aspergillus sp. xy02. Fitoterapia 127, 322-327. https://doi.org/ 10.1016/j.fitote.2018.02.031.
- Wu, Z., Chen, J., Zhang, X., Chen, Z., Li, T., She, Z., Ding, W., Li, C., 2019. Four new isocoumarins and a new natural tryptamine with antifungal activities from a mangrove endophytic fungus Botryosphaeria ramosa L29. Mar. Drugs 17. https://doi. org/10.3390/md17020088.
- Xu, X.J., Zeng, T., Huang, Z.X., Xu, X.F., Lin, J., Chen, W.M., 2018. Synthesis and biological evaluation of cajaninstilbene acid and amorfrutins A and B as inhibitors of the Pseudomonas aeruginosa quorum sensing system. J. Nat. Prod. 81, 2621-2629. https://doi.org/10.1021/acs.jnatprod.8b00315.
- Yang, Y.H., Yang, D.S., Li, G.H., Pu, X.J., Mo, M.H., Zhao, P.J., 2019. Antibacterial diketopiperazines from an endophytic fungus Bionectria sp. Y1085. J. Antibiot. 72, 752-758. https://doi.org/10.1038/s41429-019-0209-5.
- Yao, Q., Wang, J., Zhang, X., Nong, X., Xu, X., Qi, S., 2014. Cytotoxic polyketides from the deep-sea-derived fungus Engyodontium album DFFSCS021. Mar. Drugs 12, 5902-5915. https://doi.org/10.3390/md12125902.
- Ying, Y.M., Shan, W.G., Liu, W.H., Zhan, Z.J., 2013. Studies on the metabolites of a fungal endophyte penicillium sp. HS-5 from Huperzia serrata. Chem. Asian J. 25, 1208-1210. https://doi.org/10.14233/ajchem.2013.12350.
- Zhang, X.J., Zhong, W.M., Liu, R.X., Wang, Y.M., Luo, T., Zou, Y., Qin, H.Y., Li, X.L., Zhang, R., Xiao, W.L., 2020. Structurally diverse labdane diterpenoids from Leonurus japonicus and their anti-inflammatory properties in LPS-induced RAW264.7 cells. J. Nat. Prod. 83, 2545-2558. https://doi.org/10.1021/acs.jnatprod.9b00597.
- Zhou, J., Bi, S., Chen, H., Chen, T., Yang, R., Li, M., Fu, Y., Jia, A.Q., 2017. Anti-Biofilm and antivirulence activities of metabolites from Plectosphaerella cucumerina against Pseudomonas aeruginosa. Front. Microbiol. 8, 769. https://doi.org/10.3389/ fmicb.2017.00769.
- Zhou, Z.Y., Tang, J.G., Wang, F., Dong, Z.J., Liu, J.K., 2008. Sesquiterpenes and aliphatic diketones from cultures of the basidiomycete Conocybe siliginea. J. Nat. Prod. 71, 1423-1426. https://doi.org/10.1021/np8002657.