Published February 28, 2023
| Version v1
Journal article
Restricted
Unique guanidine-conjugated catechins from the leaves of Alchornea rugosa and their autophagy modulating activity
Creators
- 1. , Eun-Jin Park & , Byeol Ryu & , Hyo-Moon Cho & , Sang-Jun Yoon & , & , Phuong-Thien Thuong & * & Korea Bioactive Natural Material Bank, Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul, 08826, Republic of & , Eun-Jin Park & , Byeol Ryu
Description
Doan, Thi-Phuong, Park, Eun-Jin, Ryu, Byeol, Cho, Hyo-Moon, Yoon, Sang-Jun, Jung, Gwan-Young, Thuong, Phuong-Thien, Oh, Won-Keun (2023): Unique guanidine-conjugated catechins from the leaves of Alchornea rugosa and their autophagy modulating activity. Phytochemistry (113521) 206: 113521, DOI: 10.1016/j.phytochem.2022.113521, URL: http://dx.doi.org/10.1016/j.phytochem.2022.113521
Files
Linked records
Additional details
Identifiers
- URL
- https://www.checklistbank.org/dataset/56273
- LSID
- urn:lsid:plazi.org:pub:624CFFE2FFF6FF886A60B06BFFA8FFD6
- URL
- http://publication.plazi.org/id/624CFFE2FFF6FF886A60B06BFFA8FFD6
References
- Barrosa, K., Pinto, E., Tempone, A., Martins, E., Lago, J., 2014. Alchornedine, a new antitrypanosomal guanidine alkaloid from Alchornea glandulosa. Planta Med. 80, 1310-1314. https://doi.org/10.1055/s-0034-1382994.
- Berlinck, R.G.S., Bertonha, A.F., Takaki, M., Rodriguez, J.P.G., 2017. The chemistry and biology of guanidine natural products. Nat. Prod. Rep. 34, 1264-1301. https://doi. org/10.1039/C7NP00037E.
- Berlinck, R.G.S., Kossuga, M.H., 2005. Natural guanidine derivatives. Nat. Prod. Rep. 22, 516. https://doi.org/10.1039/b209227c.
- Cervantes, S., Bunnik, E.M., Saraf, A., Conner, C.M., Escalante, A., Sardiu, M.E., Ponts, N., Prudhomme, J., Florens, L., Le Roch, K.G., 2014. The multifunctional autophagy pathway in the human malaria parasite, Plasmodium falciparum. Autophagy 10, 80-92. https://doi.org/10.4161/auto.26743.
- Chou, T.F., Brown, S.J., Minond, D., Nordin, B.E., Li, K., Jones, A.C., Chase, P., Porubsky, P.R., Stoltz, B.M., Schoenen, F.J., Patricelli, M.P., Hodder, P., Rosen, H., Deshaies, R.J., 2011. Reversible inhibitor of p97, DBeQ, impairs both ubiquitindependent and autophagic protein clearance pathways. Proc. Natl. Acad. Sci. U.S.A. https://doi.org/10.1073/pnas.1015312108.
- Coppens, I., 2011. Metamorphoses of malaria: the role of autophagy in parasite differentiation. Essays Biochem. 51, 127-136. https://doi.org/10.1042/ bse0510127.
- Doan, T.-P., Park, E.-J., Cho, H.-M., Ryu, B., Lee, B.-W., Thuong, P.-T., Oh, W.-K., 2021. Rugonidines A-F, Diastereomeric 1,6-dioxa-7,9-diazaspiro[4.5]dec-7-en-8-amines from the leaves of Alchornea rugosa. J. Nat. Prod. 84, 3055-3063. https://doi.org/ 10.1021/acs.jnatprod.1c00785.
- Dyshlovoy, S.A., Hauschild, J., Amann, K., Tabakmakher, K.M., Venz, S., Walther, R., Guzii, A.G., Makarieva, T.N., Shubina, L.K., Fedorov, S.N., Stonik, V.A., Bokemeyer, C., Balabanov, S., Honecker, F., Amsberg, G.V., 2015. Marine alkaloid monanchocidin a overcomes drug resistance by induction of autophagy and lysosomal membrane permeabilization. Oncotarget 6, 17328-17341. https://doi. org/10.18632/oncotarget.4175.
- Ghartey-Kwansah, G., Aboagye, B., Adu-Nti, F., Opoku, Y.K., Abu, E.K., 2020. Clearing or subverting the enemy: role of autophagy in protozoan infections. Life Sci. 247, 117453 https://doi.org/10.1016/j.lfs.2020.117453.
- Hart, N.K., Johns, S.R., Lamberton, J.A., 1969. Hexahydroimidazo-pyrimidines, a new class of alkaloids from Alchornea javanensis. J. Chem. Soc. D Chem. Commun. 1484 https://doi.org/10.1039/c29690001484.
- Khuong-Huu, F., Le Forestier, J.-P., Goutarel, R., 1972. Alchorn´eine, isoalchorn´eine et alchorn´einone, produits isol´es de l' Alchornea floribunda. Muell. Arg. Tetrahedron 28, 5207-5220. https://doi.org/10.1016/S0040-4020(01)88940-7.
- Kohyama, N., Ono, H., 2013. Hordatine A β- d-glucopyranoside from ungerminated barley grains. J. Agric. Food Chem. 61, 1112-1116. https://doi.org/10.1021/ jf304453c.
- Kulkarni, A.S., Gubbi, S., Barzilai, N., 2020. Benefits of metformin in attenuating the hallmarks of aging. Cell Metabol. 32, 15-30. https://doi.org/10.1016/j. cmet.2020.04.001.
- Li, X., Xu, J., Dai, B., Wang, X., Guo, Q., Qin, L., 2020. Targeting autophagy in osteoporosis: from pathophysiology to potential therapy. Ageing Res. Rev. 62, 101098 https://doi.org/10.1016/j.arr.2020.101098.
- Mao, F., Zhang, L., Cai, M.-H., Guo, H., Yuan, H.-H., 2015. Leonurine hydrochloride induces apoptosis of H292 lung cancer cell by a mitochondria-dependent pathway. Pharm. Biol. 53, 1684-1690. https://doi.org/10.3109/13880209.2014.1001406.
- Martinez, C.A., Mosquera, O.M., Nitno, J., 2017. Medicinal plants from the genus Alchornea (Euphorbiaceae): a review of their ethnopharmacology uses and phytochemistry. Boletin Latinoam. y del Caribe Plantas Med. y Arom´aticas 16, 162-205.
- Mizushima, N., Komatsu, M., 2011. Autophagy: renovation of cells and tissues. Cell 147, 728-741. https://doi.org/10.1016/j.cell.2011.10.026.
- Perla, V., Jayanty, S.S., 2013. Biguanide related compounds in traditional antidiabetic functional foods. Food Chem. 138, 1574-1580. https://doi.org/10.1016/j. foodchem.2012.09.125.
- Phan, N.H.T., Thuan, N.T.D., Hien, N.T.T., Huyen, P. Van, Hanh, T.T.H., Quang, T.H., Cuong, N.X., Nam, N.H., 2022. Chemical constituents from the branches and leaves of Alchornea annamica. Nat. Prod. Res. 36, 2349-2355. https://doi.org/10.1080/ 14786419.2020.1834552.
- Pierrefite-Carle, V., Santucci-Darmanin, S., Breuil, V., Camuzard, O., Carle, G.F., 2015. Autophagy in bone: self-eating to stay in balance. Ageing Res. Rev. 24, 206-217. https://doi.org/10.1016/j.arr.2015.08.004.
- Pluskal, T., Castillo, S., Villar-Briones, A., Oreˇsic ˇ, M., 2010. MZmine 2: modular framework for processing, visualizing, and analyzing mass spectrometry-based molecular profile data. BMC Bioinf. 11, 395. https://doi.org/10.1186/1471-2105- 11-395.
- Ray, A., Mathur, M., Choubey, D., Karmodiya, K., Surolia, N., 2022. Autophagy Underlies the proteostasis mechanisms of artemisinin resistance in P. falciparum Malaria. mBio 13, 1-19. https://doi.org/10.1128/mbio.00630-22.
- Ren, H., Zhao, F., Zhang, Q., Huang, X., Wang, Z., 2022. Autophagy and skin wound healing. Burn. Trauma 10, 1-11. https://doi.org/10.1093/burnst/tkac003.
- Roemmelt, S., Zimmermann, N., Rademacher, W., Treutter, D., 2003. Formation of novel flavonoids in apple (Malus domestica) treated with the 2-oxoglutarate-dependent dioxygenase inhibitor prohexadione-Ca. Phytochemistry 64, 709-716. https://doi. org/10.1016/S0031-9422(03)00389-3.
- Rowan, D.D., Dymock, J.J., Brimble, M.A., 1990. Effect of fungal metabolite peramine and analogs on feeding and development of argentine stem weevil (Listronotus bonariensis). J. Chem. Ecol. 16, 1683-1695. https://doi.org/10.1007/BF01014100.
- Sartori, R., Romanello, V., Sandri, M., 2021. Mechanisms of muscle atrophy and hypertrophy: implications in health and disease. Nat. Commun. 12, 330. https://doi. org/10.1038/s41467-020-20123-1.
- Shannon, P., 2003. Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res. 13, 2498-2504. https://doi.org/ 10.1101/gr.1239303.
- Slade, D., Ferreira, D., Marais, J.P.J., 2005. Circular dichroism, a powerful tool for the assessment of absolute configuration of flavonoids. Phytochemistry 66, 2177-2215. https://doi.org/10.1016/j.phytochem.2005.02.002.
- Sohn, E.J., Park, H.T., 2017. Natural agents mediated autophagic signal networks in cancer. Cancer Cell Int. 17, 110. https://doi.org/10.1186/s12935-017-0486-7.
- Song, X., Wang, T., Zhang, Z., Jiang, H., Wang, W., Cao, Y., Zhang, N., 2015. Leonurine exerts anti-inflammatory effect by regulating inflammatory signaling pathways and cytokines in LPS-induced mouse mastitis. Inflammation 38, 79-88. https://doi.org/ 10.1007/s10753-014-0009-9.
- Sylakowski, K., Wells, A., 2021. ECM-regulation of autophagy: the yin and the yang of autophagy during wound healing. Matrix Biol. 100- 101, 197-206. https://doi.org/ 10.1016/j.matbio.2020.12.006.
- Tanaka, T., Nakashima, T., Ueda, T., Tomii, K., Kouno, I., 2007. Facile discrimination of aldose enantiomers by reversed-phase HPLC. Chem. Pharm. Bull. 55, 899-901. https://doi.org/10.1248/cpb.55.899.
- Tang, Y., Mo, Y., Xin, D., Xiong, Z., Zeng, L., Luo, G., Cao, Y., 2021. Regulation of osteoblast autophagy based on PI3K/AKT/mTOR signaling pathway study on the effect of β- ecdysterone on fracture healing. J. Orthop. Surg. Res. 16 https://doi.org/ 10.1186/s13018-021-02862-z.
- Tapondjou, L.A., Kristina, J., Siems, K., 2016. Alchornealaxine , an unusual prenylguanidinyl-epicatechin derivative from alchornealaxine from Alchornea laxiflora (Benth) Pax and Hoffman. Record Nat. Prod. 10, 508-512.
- Vakifahmetoglu-Norberg, H., Xia, H., Yuan, J., 2015. Pharmacologic agents targeting autophagy. J. Clin. Invest. 125, 5-13. https://doi.org/10.1172/JCI73937.
- Wang, H., Liu, T., Li, L., Wang, Q., Yu, C., Liu, X., Li, W., 2015. Tetrandrine is a potent cell autophagy agonist via activated intracellular reactive oxygen species. Cell Biosci. 5 https://doi.org/10.1186/2045-3701-5-4.
- Wiart, C., 2007. Ethnopharmacology of Medicinal Plants. In: Angewandte Chemie International Edition. Humana Press, Totowa, NJ, pp. 951-952. https://doi.org/ 10.1007/978-1-59745-160-4.
- Xu, Z.L., Yu, B.Y., Xu, L.S., 2004. The investigation of Euphorbiaceous medicinal plants in southern China. Econ. Bot. 58, S307-S320. https://doi.org/10.1663/0013-0001.