Published January 31, 2023 | Version v1
Journal article Restricted

Terpene chemotypes in Gossypium hirsutum (wild cotton) from the Yucatan Peninsula, Mexico

  • 1. , Marine Mamin & , Galien Flückiger & , Teresa Quijano-Medina & * , Carlos Bustos-Segura & University of Neuchˆatel, Institute of Biology, Fundamental and Applied Research in Chemical Ecology, Rue Emile-Argand 11, CH-2000, Neuchˆatel, Switzerland

Description

Clancy, Mary V., Mamin, Marine, Flückiger, Galien, Quijano-Medina, Teresa, P, Biiniza, erez-Nino˜, Abdala-Roberts, Luis, Turlings, Ted C.J., Bustos-Segura, Carlos (2023): Terpene chemotypes in Gossypium hirsutum (wild cotton) from the Yucatan Peninsula, Mexico. Phytochemistry (113454) 205: 113454, DOI: 10.1016/j.phytochem.2022.113454, URL: http://dx.doi.org/10.1016/j.phytochem.2022.113454

Files

Restricted

The record is publicly accessible, but files are restricted to users with access.

Linked records

Additional details

Identifiers

References

  • Abdala-Roberts, L., Quijano-Medina, T., Moreira, X., V´azquez-Gonz´alez, C., Parra-Tabla, V., Berny Mier Y Ter´an, J.C., Grandi, L., Glauser, G., Turlings, T.C.J., Benrey, B., 2019. Bottom-up control of geographic variation in insect herbivory on wild cotton (Gossypium hirsutum) by plant defenses and climate. Am. J. Bot. 106, 1059-1067. https://doi.org/10.1002/ajb2.1330.
  • Agrawal, A.A., Karban, R., 2000. Specificity of constitutive and induced resistance: pigment glands influence mites and caterpillars on cotton plants. Entomol. Exp. Appl. 96, 39-49.
  • Ameijeiras-Alonso, J., Crujeiras, R.M., Rodriguez-Casal, A., 2021. Multimode: an R package for mode assessment. J. Stat. Software 97, 1-32. https://doi.org/10.18637/ jss.v097.i09.
  • Arrabal, C., Garcia-Vallejo, M.C., Cadahia, E., Cortijo, M., de Sim´on, B.F., 2012. Characterization of two chemotypes of Pinus pinaster by their terpene and acid patterns in needles. Plant Systemat. Evol. 298, 511-522. https://doi.org/10.1007/ s00606-011-0562-8.
  • Bates, D., M¨achler, M., Bolker, B., Walker, S., 2015. Fitting linear mixed-effects models using lme4. J. Stat. Software 67, 1-48. https://doi.org/10.18637/jss.v067.i01.
  • Bottrell, D.G., Adkisson, P.L., 1977. Cotton insect pest management. Annu. Rev. Entomol. 22, 451-481.
  • Bustos-Segura, C., Dillon, S., Keszei, A., Foley, W.J., Kulheim, C., 2017. Intraspecific diversity of terpenes of Eucalyptus camaldulensis (Myrtaceae) at a continental scale. Aust. J. Bot. 65, 257-269.
  • Bustos-Segura, C., Kulheim, C., Foley, W., 2015. Effects of terpene chemotypes of Melaleuca alternifolia on two specialist leaf beetles and susceptibility to myrtle rust. J. Chem. Ecol. 41, 937-947. https://doi.org/10.1007/s10886-015-0628-0.
  • Christianson, D.W., 2017. Structural and chemical biology of terpenoid cyclases. Chem. Rev. 117, 11570-11648. https://doi.org/10.1021/acs.chemrev.7b00287.
  • Clancy, M.V., Haberer, G., Jud, W., Niederbacher, B., Niederbacher, S., Senft, M., Zytynska, S.E., Weisser, W.W., Schnitzler, J.-P., 2020. Under fire-simultaneous volatilome and transcriptome analysis unravels fine-scale responses of tansy chemotypes to dual herbivore attack. BMC Plant Biol. 20, 1-18.
  • Clancy, M.V., Zytynska, S.E., Senft, M., Weisser, W.W., Schnitzler, J.-P., 2016. Chemotypic variation in terpenes emitted from storage pools influences early aphid colonisation on tansy. Sci. Rep. 6, 1-12.
  • d' Eeckenbrugge, G.C., Lacape, J.-M., 2014. Distribution and differentiation of wild, feral, and cultivated populations of perennial upland cotton (Gossypium hirsutum L.) in Mesoamerica and the Caribbean. PLoS One 9.
  • De Moraes, C.M., Lewis, W.J., Par´e, P.W., Alborn, H.T., Tumlinson, J.H., 1998. Herbivore-infested plants selectively attract parasitoids. Nature 393, 570-573. https://doi.org/10.1038/31219.
  • de Villemereuil, P., 2018. Quantitative genetic methods depending on the nature of the phenotypic trait. Ann. N. Y. Acad. Sci. 1422, 29-47. https://doi.org/10.1111/ nyas.13571.
  • Despinasse, Y., Moja, S., Soler, C., Jullien, F., Pasquier, B., Bessi`ere, J.-M., Baudino, S., Nicol`e, F., 2020. Structure of the chemical and genetic diversity of the true lavender over its natural range. Plants 9. https://doi.org/10.3390/plants9121640.
  • Eisenring, M., Meissle, M., Hagenbucher, S., Naranjo, S.E., Wettstein, F., Romeis, J., 2017. Cotton defense induction patterns under spatially, temporally and quantitatively varying herbivory levels. Front. Plant Sci. 8.
  • Elzen, G.W., Williams, H.J., Bell, A.A., Stipanovic, R.D., Vinson, S.B., 1985. Quantification of volatile terpenes of glanded and glandless Gossypium hirsutum L. cultivars and lines by gas chromatography. J. Agric. Food Chem. 33, 1079-1082. https://doi.org/10.1021/jf00066a015.
  • Elzen, G.W., Williams, H.J., Vinson, S.B., Powell, J.E., 1987. Comparative flight behavior of parasitoids Campoletis sonorensis and Microplitis croceipes. Entomol. Exp. Appl. 45, 175-180. https://doi.org/10.1111/j.1570-7458.1987.tb01078.x.
  • Environmental Justice Foundation in collaboration with Pesticide Action Network UK, 2007. The Deadly Chemicals in Cotton.
  • Falconer, D.S., Mackay, T.F.C., 1996. Introduction to Quantitative Genetics. UK Longman Group, Essex.
  • Gershenzon, J., Dudareva, N., 2007. The function of terpene natural products in the natural world. Nat. Chem. Biol. 3, 408-414. https://doi.org/10.1038/ nchembio.2007.5.
  • Gomes, E.N., Zorde, M., Patel, H., Lyu, W., Wu, Q., Simon, J.E., 2021. Chemodiversity in Nepeta spp.: a literature review on comparative germplasm studies with focus on iridoids and other terpenes. J. Med. Act. Plants 10, 82-115.
  • Gouinguen´e, S.P., Turlings, T.C., 2002. The effects of abiotic factors on induced volatile emissions in corn plants. Plant Physiol. 129, 1296-1307.
  • Gu, Z., Eils, R., Schlesner, M., 2016. Complex heatmaps reveal patterns and correlations in multidimensional genomic data. Bioinformatics 32, 2847-2849. https://doi.org/ 10.1093/bioinformatics/btw313.
  • Hadfield, J.D., 2010. MCMC methods for multi-response generalized linear mixed models: the MCMCglmm R package. J. Stat. Software 33, 1-22. https://doi.org/ 10.18637/jss.v033.i02.
  • Hagenbucher, S., Birgersson, G., Chattington, S., Anderson, P., 2016. Domestication influences choice behavior and performance of a generalist herbivore. Perspect. Plant Ecol. Evol. Systemat. 23, 63-72. https://doi.org/10.1016/j. ppees.2016.09.001.
  • Hagenbucher, S., W¨ackers, F.L., Wettstein, F.E., Olson, D.M., Ruberson, J.R., Romeis, J., 2013. Pest trade-offs in technology: reduced damage by caterpillars in Bt cotton benefits aphids. Proc. R. Soc. B Biol. Sci. 280, 20130042 https://doi.org/10.1098/ rspb.2013.0042.
  • Hare, J.D., 2011. Ecological role of volatiles produced by plants in response to damage by herbivorous insects. Annu. Rev. Entomol. 56, 161-180. https://doi.org/10.1146/ annurev-ento-120709-144753.
  • Holopainen, J.K., Gershenzon, J., 2010. Multiple stress factors and the emission of plant VOCs. Spec. Issue Induc. Biog. Volatile Org. Compd. Plants 15, 176-184. https://doi. org/10.1016/j.tplants.2010.01.006.
  • Huang, X., Xiao, Y., Kollner ¨, T.G., Zhang, W., Wu, Junxiang, Wu, Juan, Guo, Y., Zhang, Y., 2013. Identification and characterization of (E)-β- caryophyllene synthase and α/β- pinene synthase potentially involved in constitutive and herbivore-induced terpene formation in cotton. Plant Physiol. Biochem. 73, 302-308. https://doi.org/ 10.1016/j.plaphy.2013.10.017.
  • Huang, X.-Z., Xiao, Y.-T., K¨ollner, T.G., Jing, W.-X., Kou, J.-F., Chen, J.-Y., Liu, D.-F., Gu, S.-H., Wu, J.-X., Zhang, Y.-J., Guo, Y.-Y., 2018. The terpene synthase gene family in Gossypium hirsutum harbors a linalool synthase GhTPS12 implicated in direct defence responses against herbivores. Plant Cell Environ. 41, 261-274. https://doi. org/10.1111/pce.13088.
  • Isah, T., 2019. Stress and defense responses in plant secondary metabolites production. Biol. Res. 52, 39. https://doi.org/10.1186/s40659-019-0246-3.
  • Karban, R., Carey, J.R., 1984. Induced resistance of cotton seedlings to mites. Science 225, 53-54. https://doi.org/10.1126/science.225.4657.53.
  • Karban, R., Wetzel, W.C., Shiojiri, K., Ishizaki, S., Ramirez, S.R., Blande, J.D., 2014. Deciphering the language of plant communication: volatile chemotypes of sagebrush. New Phytol. 204, 380-385.
  • Karunanithi, P.S., Zerbe, P., 2019. Terpene synthases as metabolic gatekeepers in the evolution of plant terpenoid chemical diversity. Front. Plant Sci. 10.
  • Lange, M.B., Turner, G.W., 2013. Terpenoid biosynthesis in trichomes-current status and future opportunities. Plant Biotechnol. J. 11, 2-22. https://doi.org/10.1111/ j.1467-7652.2012.00737.x.
  • Llandres, A.L., Almohamad, R., Br´evault, T., Renou, A., T´er´eta, I., Jean, J., Goebel, F.-R., 2018. Plant training for induced defense against insect pests: a promising tool for integrated pest management in cotton. Pest Manag. Sci. 74, 2004-2012.
  • Loughrin, J.H., Manukian, A., Heath, R.R., Tumlinson, J.H., 1995. Volatiles emitted by different cotton varieties damaged by feeding beet armyworm larvae. J. Chem. Ecol. 21, 1217-1227.
  • Loughrin, J.H., Manukian, A.R.A., Heath, R.R., Turlings, T.C., Tumlinson, J.H., 1994. Diurnal cycle of emission of induced volatile terpenoids by herbivore-injured cotton plant. Proc. Natl. Acad. Sci. 91, 11836-11840.
  • Lucero, M., Estell, R., Tellez, M., Fredrickson, E., 2009. A retention index calculator simplifies identification of plant volatile organic compounds. Phytochem. Anal. 20, 378-384. https://doi.org/10.1002/pca.1137.
  • Magalhtaes, D.M., Borges, M., Laumann, R.A., Caulfield, J.C., Birkett, M.A., Blassioli-Moraes, M.C., 2020. Inefficient weapon-the role of plant secondary metabolites in cotton defence against the boll weevil. Planta 252, 94. https://doi.org/10.1007/ s00425-020-03497-w.
  • McCall, P.J., Turlings, T.C.J., Lewis, W.J., Tumlinson, J.H., 1993. Role of plant volatiles in host location by the specialist parasitoid Microplitis croceipes cresson (Braconidae: Hymenoptera). J. Insect Behav. 6, 625-639. https://doi.org/10.1007/ BF01048128.
  • Minyard, J.P., Tumlinson, J.H., Hedin, P.A., Thompson, A.C., 1965. Isolation and identification, constituents of cotton bud terpene hydrocarbons. J. Agric. Food Chem. 13, 599-602.
  • O' Callaghan, S., De Souza, D.P., Isaac, A., Wang, Q., Hodkinson, L., Olshansky, M., Erwin, T., Appelbe, B., Tull, D.L., Roessner, U., Bacic, A., McConville, M.J., Likic ´, V. A., 2012. PyMS: a Python toolkit for processing of gas chromatography-mass spectrometry (GC-MS) data. Application and comparative study of selected tools. BMC Bioinf. 13, 115. https://doi.org/10.1186/1471-2105-13-115.
  • Oksanen, J., Blanchet, F.G., Friendly, M., Kindt, R., Legendre, P., McGlinn, D., Minchin, P.R., O' Hara, R.B., Simpson, G.L., Solymos, P., Stevens, M.H.H., Szoecs, E., Wagner, H., 2020. Vegan: Community Ecology Package. R Package Version 2, pp. 5-7.
  • Opitz, S., Kunert, G., Gershenzon, J., 2008. Increased terpenoid accumulation in cotton (Gossypium hirsutum) foliage is a general wound response. J. Chem. Ecol. 34, 508-522.
  • O' Reilly-Wapstra, J.M., Freeman, J.S., Davies, N.W., Vaillancourt, R.E., Fitzgerald, H., Potts, B.M., 2011. Quantitative trait loci for foliar terpenes in a global eucalypt species. Tree Genet. Genomes 7, 485-498. https://doi.org/10.1007/s11295-010- 0350-6.
  • Par´e, P.W., Tumlinson, J.H., 1997. De novo biosynthesis of volatiles induced by insect herbivory in cotton plants. Plant Physiol. 114, 1161-1167.
  • Pichersky, E., Raguso, R.A., 2018. Why do plants produce so many terpenoid compounds? New Phytol. 220, 692-702. https://doi.org/10.1111/nph.14178.
  • R Core Team, 2013. n.d. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria, ISBN 3-900051-07-0. URL. http://www.R-project.org/.
  • Renou, A., T´er´eta, I., Togola, M., 2011. Manual topping decreases bollworm infestations in cotton cultivation in Mali. Crop Protect. 30, 1370-1375. https://doi.org/10.1016/ j.cropro.2011.05.020.
  • Reyes-Hern´andez, M., Angulo-P´erez, D., Quijano-Medina, T., Moreira, X., Parra-Tabla, V., V´asquez-Bolatnos, M., Abdala-Roberts, L., 2022. An experimental test of ant effects on herbivory and pathogen infection on wild cotton (Gossypium hirsutum L.). Arthropod-Plant Interact. 16, 77-86. https://doi.org/10.1007/s11829-021- 09876-8.
  • R¨ose, U.S., Tumlinson, J.H., 2005. Systemic induction of volatile release in cotton: how specific is the signal to herbivory? Planta 222, 327-335.
  • Rosenkranz, M., Chen, Y., Zhu, P., Vlot, A.C., 2021. Volatile terpenes - mediators of plant-to-plant communication. Plant J. 108, 617-631. https://doi.org/10.1111/ tpj.15453.
  • Senft, M., Clancy, M.V., Weisser, W.W., Schnitzler, J.-P., Zytynska, S.E., 2019. Additive effects of plant chemotype, mutualistic ants and predators on aphid performance and survival. Funct. Ecol. 33, 139-151. https://doi.org/10.1111/1365-2435.13227.
  • Suzuki, R., Shimodaira, H., 2006. Pvclust: an R package for assessing the uncertainty in hierarchical clustering. Bioinformatics 22, 1540-1542. https://doi.org/10.1093/ bioinformatics/btl117.
  • Thompson, J., Charpentier, A., Bouguet, G., Charmasson, F., Roset, S., Buatois, B., Vernet, P., Gouyon, P., 2013. Evolution of a genetic polymorphism with climate change in a Mediterranean landscape. Proc. Natl. Acad. Sci. 110, 2893-2897. https://doi.org/10.1073/pnas.1215833110.
  • Trindade, H., Pedro, L.G., Figueiredo, A.C., Barroso, J.G., 2018. Chemotypes and terpene synthase genes in Thymus genus: state of the art. Ind. Crop. Prod. 124, 530-547. https://doi.org/10.1016/j.indcrop.2018.08.021.
  • Turlings, T.C., Loughrin, J.H., McCall, P.J., R¨ose, U.S., Lewis, W.J., Tumlinson, J.H., 1995. How caterpillar-damaged plants protect themselves by attracting parasitic wasps. Proc. Natl. Acad. Sci. 92, 4169-4174. https://doi.org/10.1073/ pnas.92.10.4169.
  • Vel´azquez-Lopez ´, R., Wegier, A., Alavez, V., P´erez-Lopez ´, J., V´azquez-Barrios, V., Arroyo-Lambaer, D., Ponce-Mendoza, A., Kunin, W.E., 2018. The mating system of the wildto-domesticated complex of Gossypium hirsutum L. Is mixed. Front. Plant Sci. 9.
  • Wegier, A., Pi´neyro- Nelson, A., Alar´on, J., G´alvez-Mariscal, A., Alvarez-Buylla ´, E.R., Pinero ´, D., 2011. Recent long-distance transgene flow into wild populations conforms to historical patterns of gene flow in cotton (Gossypium hirsutum) at its centre of origin. Mol. Ecol. 20, 4182-4194. https://doi.org/10.1111/j.1365- 294X.2011.05258.x.
  • Wilke, C.O., 2021. Ggridges: Ridgeline Plots in "Ggplot2". R package version 0.5.3.
  • Yang, C.-Q., Wu, X.-M., Ruan, J.-X., Hu, W.-L., Mao, Y.-B., Chen, X.-Y., Wang, L.-J., 2013. Isolation and characterization of terpene synthases in cotton (Gossypium hirsutum). Phytochemistry 96, 46-56. https://doi.org/10.1016/j.phytochem.2013.09.009.
  • Yuan, D., Grover, C.E., Hu, G., Pan, M., Miller, E.R., Conover, J.L., Hunt, S.P., Udall, J.A., Wendel, J.F., 2021. Parallel and intertwining threads of domestication in allopolyploid cotton. Adv. Sci. 8, 2003634 https://doi.org/10.1002/ advs.202003634.
  • Zhang, C.-P., Zhang, J.-L., Sun, Z.-R., Liu, X.-Y., Shu, L.-Z., Wu, H., Song, Y., He, D.-H., 2022. Genome-wide identification and characterization of terpene synthase genes in Gossypium hirsutum. Gene 828, 146462. https://doi.org/10.1016/j. gene.2022.146462.
  • Zhou, F., Pichersky, E., 2020. More is better: the diversity of terpene metabolism in plants. Phys. Met. 55, 1-10. https://doi.org/10.1016/j.pbi.2020.01.005.