Published May 10, 2023 | Version v1
Journal article Restricted

Colletotrichum menezesiae sp. nov.: a novel species causing anthracnose on chayote in Brazil

  • 1. Departamento de Agronomia, Universidade Federal Rural de Pernambuco, Recife, Pernambuco, Brazil. & marcos.camara@ufrpe.br; https://orcid.org/0000-0002-7930-7886
  • 2. Centro de Ciências Agrárias e da Biodiversidade, Universidade Federal do Cariri, Crato, Ceará, Brazil. & sami.michereff@ufca.edu.br; https://orcid.org/0000-0002-2156-3502
  • 3. Embrapa Hortaliças (Embrapa Vegetable Crops), Brasilia, Distrito Federal, Brazil. & ailton.reis@embrapa.br; https://orcid.org/0000-0002-5705-3002

Description

Vieira, Willie Anderson Dos Santos, Costa, Christiane Almeida Da, Câmara, Marcos Paz Saraiva, Michereff, Sami Jorge, Reis, Ailton (2023): Colletotrichum menezesiae sp. nov.: a novel species causing anthracnose on chayote in Brazil. Phytotaxa 597 (1): 80-86, DOI: 10.11646/phytotaxa.597.1.9, URL: http://dx.doi.org/10.11646/phytotaxa.597.1.9

Files

Restricted

The record is publicly accessible, but files are restricted to users with access.

Linked records

Additional details

Identifiers

LSID
urn:lsid:plazi.org:pub:AB59FF87FFD5FF81CB67FFAB5647FFF2
URL
http://publication.plazi.org/id/AB59FF87FFD5FF81CB67FFAB5647FFF2

References

  • Bezerra, J.P., Ferreira, P.V., Barbosa, L. da F., Ramos-Sobrinho, R., Pinho, D.B., Reis, A., Assunc"o, I.P. & Lima, G.S.A. (2016) First report of anthracnose on chayote fruits (Sechium edule) caused by Colletotrichum brevisporum. Plant Disease 100: 217-217. https://doi.org/10.1094/PDIS-07-15-0793-PDN
  • Carbone, I. & Kohn, L.M. (1999) A method for designing primer sets for speciation studies in filamentous ascomycetes. Mycologia 91: 553-556. https://doi.org/10.1080/00275514.1999.12061051
  • Coronel, O.A.D.A., Leon-Garcia, E., Vela-Gutierrez, G., Medina, J.D. la C., Garcia-Varela, R. & Garcia, H.S. (2017) Chayote (Sechium edule (Jacq.) Swartz). In: Yahia, E.M. (ed.) Fruit and Vegetable Phytochemicals. John Wiley & Sons, Chichester, UK, pp. 979- 992.
  • Damm, U., Cannon, P.F., Liu, F., Barreto, R.W., Guatimosim, E. & Crous, P.W. (2013) The Colletotrichum orbiculare species complex: important pathogens of field crops and weeds. Fungal Diversity 61: 29-59. https://doi.org/10.1007/s13225-013-0255-4
  • Damm, U., Sato, T., Alizadeh, A., Groenewald, J.Z. & Crous, P.W. (2019) The Colletotrichum dracaenophilum, C. magnum and C. orchidearum species complexes. Studies in Mycology 92: 1-46. https://doi.org/10.1016/j.simyco.2018.04.001
  • Dettman, J.R., Jacobson, D.J., Turner, E., Pringle, A. & Taylor, J.W. (2003) Reproductive isolation and phylogenetic divergence in Neurospora: comparing methods of species recognition in a model eukaryote. Evolution 57: 2721-2741. https://doi.org/10.1111/j.0014-3820.2003.tb01515.x
  • Diaz-de-Cerio, E., Verardo, V., Fernandez-Gutierrez, A. & Gomez-Caravaca, A.M. (2019) New insight into phenolic composition of chayote (Sechium edule (Jacq.) Sw.). Food Chemistry 295: 514-519. https://doi.org/10.1016/j.foodchem.2019.05.146
  • Farr, D.F. & Rossman, A.Y. (2023) Fungal Databases, U.S. National Fungus Collections, ARS, USDA. [https://nt.ars-grin.gov/ fungaldatabases]
  • Gardes, M. & Bruns, T.D. (1993) ITS primers with enhanced specificity for basidiomycetes - application to the identification of mycorrhizae and rusts. Molecular Ecology 2: 113-118. https://doi.org/10.1111/j.1365-294X.1993.tb00005.x
  • Glass, N.L. & Donaldson, G.C. (1995) Development of primer sets designed for use with the PCR to amplify conserved genes from filamentous ascomycetes. Applied and Environmental Microbiology 61: 1323-1330. https://doi.org/10.1128/aem.61.4.1323-1330.1995
  • Johnston, P.R. & Jones, D. (1997) Relationships among Colletotrichum isolates from fruit-rots assessed using rDNA sequences. Mycologia 89: 420-430. https://doi.org/10.1080/00275514.1997.12026801
  • Kalyaanamoorthy, S., Minh, B.Q., Wong, T.K.F., von Haeseler, A. & Jermiin, L.S. (2017) ModelFinder: fast model selection for accurate phylogenetic estimates. Nature Methods 14: 587-589. https://doi.org/10.1038/nmeth.4285
  • Katoh, K., Rozewicki, J. & Yamada, K.D. (2019) MAFFT online service: multiple sequence alignment, interactive sequence choice and visualization. Briefings in Bioinformatics 20: 1160-1166. https://doi.org/10.1093/bib/bbx108
  • Kumar, S., Stecher, G. & Tamura, K. (2016) MEGA7: Molecular evolutionary genetics analysis version 7.0 for bigger datasets. Molecular Biology and Evolution 33: 1870-1874. https://doi.org/10.1093/molbev/msw054
  • Kuraku, S., Zmasek, C.M., Nishimura, O. & Katoh, K. (2013) aLeaves facilitates on-demand exploration of metazoan gene family trees on MAFFT sequence alignment server with enhanced interactivity. Nucleic Acids Research 41: W22-W28. https://doi.org/10.1093/nar/gkt389
  • Minh, B.Q., Schmidt, H.A., Chernomor, O., Schrempf, D., Woodhams, M.D., von Haeseler, A. & Lanfear, R. (2020) IQ-TREE 2: new models and efficient methods for phylogenetic inference in the genomic era. Molecular Biology and Evolution 37: 1530-1534. https://doi.org/10.1093/molbev/msaa015
  • Nguyen, L.-T., Schmidt, H.A., von Haeseler, A. & Minh, B.Q. (2015) IQ-TREE: a fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Molecular Biology and Evolution 32: 268-274. https://doi.org/10.1093/molbev/msu300
  • Noireung, P., Phoulivong, S., Liu, F., Cai, L., McKenzie, E.H.C., Chukeatirote, E., Jones, E.B.G., Bahkali, A.H. & Hyde, K.D. (2012) Novel species of Colletotrichum revealed by morphology and molecular analysis. Cryptogamie, Mycologie 33: 347-362. https://doi.org/10.7872/crym.v33.iss3.2012.347
  • Nylander, J.A.A. (2004) MrModeltest v2. Program distributed by the author. Evolutionary Biology Centre, Uppsala University, Uppsala, Sweden.
  • O'Donnell, K. & Cigelnik, E. (1997) Two divergent intragenomic rDNA ITS2 types within a monophyletic lineage of the fungus Fusarium are nonorthologous. Molecular Phylogenetics and Evolution 7: 103-116. https://doi.org/10.1006/mpev.1996.0376
  • Oliveira, J.T. de & Oliveira, R.A. de (2021) Path analysis of physical attributes of chayote fruit. Engenharia Agricola 41: 468-474. https://doi.org/10.1590/1809-4430-eng.agric.v41n4p468-474/2021
  • Rambaut, A., Drummond, A.J., Xie, D., Baele, G. & Suchard, M.A. (2018) Posterior summarization in Bayesian phylogenetics using tracer 1.7. Systematic Biology 67: 901-904. https://doi.org/10.1093/sysbio/syy032
  • Shimodaira, H. (2002) An approximately unbiased test of phylogenetic tree selection. Systematic Biology 51: 492-508. https://doi.org/10.1080/10635150290069913
  • Staden, R., Beal, K.F. & Bonfield, J.K. (1999) The Staden package, 1998. In: Bioinformatics Methods and Protocols. Humana Press, New Jersey, pp. 115-130.
  • Taylor, J.W., Jacobson, D.J., Kroken, S., Kasuga, T., Geiser, D.M., Hibbett, D.S. & Fisher, M.C. (2000) Phylogenetic species recognition and species concepts in fungi. Fungal Genetics and Biology 31: 21-32. https://doi.org/10.1006/fgbi.2000.1228
  • Templeton, D., Rikkerink, E.H.A., Solon, S.L. & Crowhurst, R.N. (1992) Characterization of the glyceraldehyde-3-phosphate gene and cDNA from the plant pathogenic fungus. Mycologia 122: 225-230. https://doi.org/10.1016/0378-1119(92)90055-T
  • Vaidya, G., Lohman, D.J. & Meier, R. (2011) SequenceMatrix: concatenation software for the fast assembly of multi-gene datasets with character set and codon information. Cladistics 27: 171-180. https://doi.org/10.1111/j.1096-0031.2010.00329.x
  • Vieira, W.A.S., Lima, W.G., Nascimento, E.S., Michereff, S.J., Camara, M.P.S. & Doyle, V.P. (2017) The impact of phenotypic and molecular data on the inference of Colletotrichum diversity associated with Musa. Mycologia 109: 912-934. https://doi.org/10.1080/00275514.2017.1418577
  • White, T.J., Bruns, T., Lee, S. & Taylor, J. (1990) Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: PCR Protocols. Elsevier, pp. 315-322. https://doi.org/10.1016/B978-0-12-372180-8.50042-1