Published December 1, 2022 | Version v1
Journal article Restricted

Reassessing the phylogeny and divergence times of sloths (Mammalia: Pilosa: Folivora), exploring alternative morphological partitioning and dating models

Description

Casali, Daniel M, Boscaini, Alberto, Gaudin, Timothy J, Perini, Fernando A (2022): Reassessing the phylogeny and divergence times of sloths (Mammalia: Pilosa: Folivora), exploring alternative morphological partitioning and dating models. Zoological Journal of the Linnean Society 196 (4): 1505-1551, DOI: 10.1093/zoolinnean/zlac041, URL: https://academic.oup.com/zoolinnean/article/196/4/1505/6617197

Files

Restricted

The record is publicly accessible, but files are restricted to users with access.

Linked records

Additional details

Identifiers

LSID
urn:lsid:plazi.org:pub:FFD6FFC0FFE7FF80FFAFFFC3C1119741
URL
http://publication.plazi.org/id/FFD6FFC0FFE7FF80FFAFFFC3C1119741

References

  • Ameghino F. 1885. Nuevos restos de mamiferos fosiles Oligocenos recogidos por el Profesor Pedro Scalabrini y pertenecientes al Museo Provincial de la ciudad de Parana. Boletin de la Academia Nacional de Ciencias de Cordoba 8: 5-207.
  • Ameghino F. 1887. Enumeracion sistematica de las especies de mamiferos fosiles coleccionados por Carlos Ameghino en los terrenos eocenos de la Patagonia. Boletin del Museo de La Plata 1: 1-26.
  • Ameghino F. 1891a. Observaciones criticas sobre los mamiferos eocenos de la Patagonia austral. Revista Argentina de Historia Natural 1: 328-382.
  • Ameghino F. 1891b. Mamiferos y aves fosiles argentinas. Especies nuevas, adiciones y correcciones. Revista Argentina de Historia Natural 1: 240-259.
  • Ameghino F. 1895. Premiere contribution a la connaissance de la faune mammalogique des couches a Pyrotherium. Boletin del Instituto Geografico Argentino 15: 1-60.
  • Ameghino F. 1904. Nuevas especies de mamiferos cretaceos y terciarios de la Republica Argentina. Anales de la Sociedad Cientifica Argentina 58: 241-291.
  • Ameghino F. 1907. Notas sobre una pequena coleccion de huesos de mamiferos procedentes de las grutas calcareas de Iporanga en el estado de Sao Paulo, Brazil. Revista do Museu Paulista 7: 59-124.
  • Amson E, de Muizon C, Gaudin TJ. 2016. A reappraisal of the phylogeny of the Megatheria (Mammalia: Tardigrada), with an emphasis on the relationships of the Thalassocninae, the marine sloths. Zoological Journal of the Linnean Society 179: 217-236.
  • Amson E, de Muizon C, Laurin M, Argot C, de Buffrenil V. 2014. Gradual adaptation of bone structure to aquatic lifestyle in extinct sloths from Peru. Proceedings of the Royal Society B: Biological Sciences 281: 20140192.
  • Anthony HE. 1916. Preliminary report on fossil mammals from Porto Rico, with descriptions of new genus of ground sloth and two new genera of hystricomorph rodents. Annals of the New York Academy of Sciences 27: 193-203.
  • Arredondo O. 1961. Descripciones preliminares de dos nuevos generos y especies de edentados del Pleistoceno Cubano. Boletin del Grupo de Exploraciones Cientificas 1: 19-40.
  • Assis LCS. 2015. Homology assessment in parsimony and model-based analyses: two sides of the same coin. Cladistics 31: 315-320.
  • Azevedo GHF, Bougie T , Carboni M , Hedin M , Ramirez MJ. 2022. Combining genomic, phenotypic and Sanger sequencing data to elucidate the phylogeny of the two-clawed spiders (Dionycha). Molecular Phylogenetics and Evolution 166: 107327.
  • Bapst DW. 2012. Paleotree: an R package for paleontological and phylogenetic analyses of evolution. Methods in Ecology and Evolution 3: 803-807.
  • Bapst DW, Wright AM, Matzke NJ, Lloyd GT. 2016. Topology,divergence dates, and macroevolutionary inferences vary between different tip-dating approaches applied to fossil theropods (Dinosauria). Biology Letters 12: 20160237.
  • Barba-Montoya J, Tao Q, Kumar S. 2021. Molecular and morphological clocks for estimating evolutionary divergence times. BMC Ecology and Evolution 21: 83.
  • Bargo MS, De Iuliis G, Toledo N. 2019. Early Miocene sloths (Xenarthra, Folivora) from the Rio Santa Cruz valley (southern Patagonia, Argentina). Ameghino, 1887 revisited. Publicacion Electronica de la Asociacion Paleontologica Argentina 19: 102-137.
  • Bargo MS, Toledo N, Vizcaino SF. 2006. Muzzle of South American Pleistocene ground sloths (Xenarthra, Tardigrada). Journal of Morphology 267: 248-263.
  • Bargo MS, Vizcaino SF, Archuby FM, Blanco RE. 2000. Limb bone proportions, strength and digging in some Lujanian (Late Pleistocene-Early Holocene) mylodontid ground sloths (Mammalia, Xenarthra). Journal of Vertebrate Paleontology 20: 601-610.
  • Barido-Sottani J, Aguirre-Fernandez G, Hopkins MJ, Stadler T, Warnock R. 2019. Ignoring stratigraphic age uncertainty leads to erroneous estimates of species divergence times under the fossilized birth-death process. Proceedings of the Royal Society B: Biological Sciences 286: 20190685.
  • Barido-Sottani J,Vaughan TG, Stadler T. 2020. A multitype birth-death model for Bayesian inference of lineage-specific birth and death rates. Systematic Biology 69: 973-986.
  • Beck RMD, Lee MSY. 2014. Ancient dates or accelerated rates? Morphological clocks and the antiquity of placental mammals. Proceedings of the Royal Society B: Biological Sciences 281: 1-10.
  • Bell MA, Lloyd GT. 2015. Strap: an R package for plotting phylogenies against stratigraphy and assessing their stratigraphic congruence. Palaeontology 58: 379-389.
  • Bergsten J. 2005. A review of long-branch attraction. Cladistics 21: 163-193.
  • Bhattacharyya A. 1946. On a measure of divergence between two multinomial populations. Sankhya: the Indian Journal of Statistics 7: 401-406.
  • Bocquentin-Villanueva J. 1984. Un nuevo representante de la subfamilia Prepotheriinae (Mammalia, Edentata) proveniente del Mioceno de Venezuela. In: Perrilliat MC. III Congreso Latinoamericano de Paleontologia Memorias, Oaxtepec, Mexico, 14-18 October; Mexico City: Universidad Nacional Autonoma de Mexico. 516-523.
  • Bordas AF. 1935. Observaciones sobre los generos 'Scelidodon' Ameghino y 'Proscelidodon'. Physis 11: 484-491.
  • Boscaini A, Gaudin TJ, Quispe BM, Munch P, Antoine PO, Pujos F. 2019a. New well-preserved craniodental remains of Simomylodon uccasamamensis (Xenarthra: Mylodontidae) from the Pliocene of the Bolivian Altiplano: phylogenetic, chronostratigraphic and palaeobiogeographical implications. Zoological Journal of the Linnean Society 185: 459-486.
  • Boscaini A , Iurino DA , Mamani Quispe B , Andrade Flores R, Sardella R, Pujos F, Gaudin TJ. 2020a. Cranial anatomy and paleoneurology of the extinct sloth Catonyx tarijensis (Xenarthra, Mylodontidae) from the Late Pleistocene of Oruro, southwestern Bolivia. Frontiers in Ecology and Evolution 8: 1-16.
  • Boscaini A, Iurino DA, Sardella R, Tirao G, Gaudin TJ, Pujos F. 2020b. Digital cranial endocasts of the extinct sloth Glossotherium robustum (Xenarthra, Mylodontidae) from the Late Pleistocene of Argentina: description and comparison with the extant sloths. Journal of Mammalian Evolution 27: 55-71.
  • Boscaini A, Pujos F, Gaudin TJ. 2019b. A reappraisal of the phylogeny of Mylodontidae (Mammalia, Xenarthra) and the divergence of mylodontine and lestodontine sloths. Zoologica Scripta 48: 691-710.
  • Brambilla L , Ibarra DA . 2018 . Archaeomylodon sampedrinensis, gen. et sp. nov., a new mylodontine from the Middle Pleistocene of Pampean Region, Argentina. Journal of Vertebrate Paleontology 38: 1-13.
  • Brandoni D. 2006. Los Megatheriinae (Xenarthra, Tardigrada, Megatheriidae) terciarios de Argentina. sistematica, evolucion y biogeografia. Unpublished Ph.D. thesis, Universidad Nacional de La Plata.
  • Brandoni D. 2014. 'Xyophorus' sp. en el Mioceno medio de Chubut: implicancias sistematicas, biogeograficas y biocronologicas del registro de un Nothrotheriinae en el Neogeno de la Argentina. Ameghiniana 51: 94-105.
  • Brandoni D, De Iuliis G. 2007. A new genus for the Megatheriinae (Xenarthra, Tardigrada, Megatheriidae) from the Arroyo Chasico Formation (Upper Miocene) of Buenos Aires Province, Argentina. Neues Jahrbuch fur Geologie und Palaontologie - Abhandlungen 244: 53-64.
  • Brazeau MD,Giles S,Dearden RP,JerveA,AriunchimegYA, Zorig E, Sansom R, Guillerme T, Castiello M. 2020. Endochondral bone in an Early Devonian 'placoderm' from Mongolia. Nature Ecology & Evolution 4: 1477-1484.
  • Brown B. 1903. A new genus of ground sloth from the Pleistocene of Nebraska. Bulletin of the American Museum of Natural History 19: 569-583.
  • Brown JM, Lemmon AR. 2007. The importance of data partitioning and the utility of Bayes factors in Bayesian phylogenetics. Systematic Biology 56: 643-655.
  • Brusatte SL, Benton MJ, Ruta M, Lloyd GT. 2008. Superiority,competition, and opportunism in the evolutionary radiation of dinosaurs. Science 321: 1485-1488.
  • Buchholtz EA, Stepien CC. 2009. Anatomical transformation in mammals: developmental origin of aberrant cervical anatomy in tree sloths. Evolution and Development 11: 69-79.
  • Buckley M. 2018. Paleoproteomics: an introduction to the analysis of ancient proteins by soft ionisation mass spectrometry. In: Lindqvist C, Rajora OP, eds. Paleogenomics. Cham: Springer, 31-52.
  • Buckley M, Farina RA, Lawless C, Tambusso PS, Varela L, Carlini AA, Powell JE, Martinez JG. 2015. Collagen sequence analysis of the extinct giant ground sloths Lestodon and Megatherium. PLoS One 10: e0139611.
  • Campbell V, Lapointe FJ. 2009. The use and validity of composite taxa in phylogenetic analysis. Systematic Biology 58: 560-572.
  • Carlini AA, Brandoni D, Dal Molin CN. 2013. A new genus and species of Planopinae (Xenarthra: Tardigrada) from the Miocene of Santa Cruz Province, Argentina. Zootaxa 3694: 565-578.
  • Carlini AA, Brandoni D, Sanchez R. 2006a. First Megatheriines (Xenarthra, Phyllophaga, Megatheriidae) from the Urumaco (Late Miocene) and Codore (Pliocene) Formations, Estado Falcon, Venezuela. Journal of Systematic Palaeontology 4: 269-278.
  • Carlini AA , Scillato-Yane GJ. 2004 . The oldest Megalonychidae (Xenarthra: Tardigrada); phylogenetic relationships and an emended diagnosis of the family. Neues Jahrbuch fur Geologie und Palaontologie-Abhandlungen 233: 423-443.
  • Carlini AA, Scillato-Yane GJ, Sanchez R. 2006b. New Mylodontoidea (Xenarthra, Phyllophaga) from the Middle Miocene-Pliocene of Venezuela. Journal of Systematic Palaeontology 4: 255-267.
  • Cartelle C. 1991. Um novo Mylodontinae (Edentata, Xenarthra) do Pleistoceno final da regiao intertropical Brasileira. Anais da Academia Brasileira de Ciencias 63: 161-170.
  • Cartelle C, De Iuliis G, Boscaini A, Pujos F. 2019. Anatomy, possible sexual dimorphism, and phylogenetic affinities of a new mylodontine sloth from the Late Pleistocene of intertropical Brazil. Journal of Systematic Palaeontology 17: 1957-1988.
  • Cartelle C, De Iuliis G, Ferreira RL. 2009. Systematic revision of tropical Brazilian scelidotheriine sloths (Xenarthra, Mylodontoidea). Journal of Vertebrate Paleontology 29: 555-566.
  • Cartelle C, De Iuliis G, Pujos F. 2008. A new species of Megalonychidae (Mammalia, Xenarthra) from the Quaternary of Poco Azul (Bahia, Brazil). Comptes Rendus Palevol 7: 335-346.
  • Casali D de M, Dos Santos Junior JE, Miranda FR, Santos FR, Perini FA. 2020. Total-evidence phylogeny and divergence times of Vermilingua (Mammalia: Pilosa). Systematics and Biodiversity 18: 216-227.
  • Casali DM, Perini FA. 2017. The evolution of hyoid apparatus in Xenarthra (Mammalia: Eutheria). Historical Biology 29: 777-788.
  • Clarke JA, Middleton KM. 2008. Mosaicism, modules, and the evolution of birds: results from a Bayesian approach to the study of morphological evolution using discrete character data. Systematic Biology 57: 185-201.
  • Cuvier G. 1796. Notice sur le squelette d'une tres-grande espece de quadrupede inconnue jusqu'a present, trouve au Paraguay, et depose au cabinet d'histoire naturelle de Madrid. Paris: Magasin encyclopedique, ou Journal des Sciences, des Lettres et des Arts.
  • Delsuc F, Ctzeflis FM, Stanhope MJ, Douzery EJP. 2001. The evolution of armadillos, anteaters and sloths depicted by nuclear and mitochondrial phylogenies: implications for the status of the enigmatic fossil Eurotamandua. Proceedings of the Royal Society of London. Series B: Biological Sciences 268: 1605-1615.
  • Delsuc F, Kuch M, Gibb GC, Hughes J, Szpak P, Southon J, Enk J, Duggan AT, Poinar HN. 2018. Resolving the phylogenetic position of Darwin's extinct ground sloth (Mylodon darwinii) using mitogenomic and nuclear exon data. Proceedings of the Royal Society B: Biological Sciences 285: 1-10.
  • Delsuc F, Kuch M, Gibb GC,Karpinski E, Hackenberger D, Szpak P, Martinez JG, Mead JI, McDonald HG, MacPhee RDE, Billet G, Hautier L, Poinar HN. 2019. Ancient mitogenomes reveal the evolutionary history and biogeography of sloths. Current Biology 29: 2031-2042.
  • Duchene DA, Tong KJ, Foster CSP, Duchene S, Lanfear R, Ho SYW. 2020. Linking branch lengths across sets of loci provides the highest statistical support for phylogenetic inference. Molecular Biology and Evolution 37: 1202-1210.
  • Engelmann GF. 1985. The phylogeny of the Xenarthra. In: Montgomery GG, ed. The evolution and ecology of armadillos, sloths and vermilinguas. Washington, DC: Smithsonian Institution Press, 51-64.
  • Engelmann GF. 1987. A new Deseadan sloth (Mammalia: Xenarthra) from Salla, Bolivia, and its implications for the primitive condition of the dentition in edentates. Journal of Vertebrate Paleontology 7: 217-223.
  • Fan Y, Wu R, Chen MH, Kuo L, Lewis PO. 2011. Choosing among partition models in Bayesian phylogenetics.Molecular Biology and Evolution 28: 523-532.
  • Farina RA, Vizcaino SF. 2003. Slow moving or browsers? A note on nomenclature. Morphological studies in fossil and extant Xenarthra (Mammalia). Senckenbergiana Biologica 83: 34.
  • Farris JS. 1969. A successive approximations approach to character weighting. Systematic Zoology 18: 374.
  • Farris JS. 1989. The retention index and the rescaled consistency index. Cladistics 5: 417-419.
  • Felsenstein J. 1978. Cases in which parsimony or compatibility methods will be positively misleading. Systematic Biology 27: 401-410.
  • Gardner AL. 2008. Mammals of South America, Volume 1 - Marsupials, xenarthrans, shrews, and bats. Chicago: The University of Chicago Press.
  • Gaudin TJ. 1990. The ear region of the Pilosa (Mammalia, Xenarthra) and the phylogeny of the Tardigrada. Journal of Vertebrate Paleontology 10: 2-4A.
  • Gaudin TJ. 1995. The ear region of edentates and the phylogeny of the Tardigrada (Mammalia, Xenarthra). Journal of Vertebrate Paleontology 15: 672-705.
  • Gaudin TJ. 1999. The morphology of xenarthrous vertebrae (Mammalia: Xenarthra). Fieldiana Geology 41: 1-38.
  • Gaudin TJ. 2004. Phylogenetic relationships among sloths (Mammalia, Xenarthra, Tardigrada): the craniodental evidence. Zoological Journal of the Linnean Society 140: 255-305.
  • Gaudin TJ, Branham DG. 1998. The phylogeny of the Myrmecophagidae (Mammalia, Xenarthra, Vermilingua) and the relationship of Eurotamandua to the Vermilingua. Journal of Mammalian Evolution 5: 237-265.
  • Gaudin TJ, Croft DA. 2015. Paleogene Xenarthra and the evolution of South American mammals. Journal of Mammalogy 96: 622-634.
  • Gaudin TJ, McDonald HG. 2008. Morphology-based investigations of the phylogenetic relationships among extant and fossil xenarthrans. In: Vizcaino SF, Loughry WJ, eds. The biology of the Xenarthra. Gainesville: University of Florida Press, 24-36.
  • Gaudin TJ, Wible JR. 2004. On the cranial osteology of the yellow armadillo Euphractus sexcintus (Dasypodidae, Xenarthra, Placentalia). Annals of Carnegie Museum 73: 117-196.
  • Gavryushkina A, Welch D, Stadler T, Drummond AJ. 2014. Bayesian inference of sampled ancestor trees for epidemiology and fossil calibration. PLoS Computational Biology 10: 1-15.
  • Gearty W. 2021. Deeptime: plotting tools for anyone working in deep time. Available at: https://github.com/willgearty/ deeptime
  • Gervais P. 1855. Recherches sur les mammiferes fossiles de l'Amerique meridionale. Paris: P. Bertrand.
  • Gervais P. 1874. Lestodon trigonidens et Valgipes deformis. Journal de Zoologie 3: 162-164.
  • Gibb GC, Condamine FL, Kuch M, Enk J, MoraesBarros N, Superina M, Poinar HN, Delsuc F. 2016. Shotgun mitogenomics provides a reference phylogenetic framework and timescale for living xenarthrans. Molecular Biology and Evolution 33: 621-642.
  • Goloboff P. 1993. Estimating character weights during tree search. Cladistics 9: 83-91.
  • Goloboff PA, Arias JS. 2019. Likelihood approximations of implied weights parsimony can be selected over the Mk model by the Akaike information criterion. Cladistics 35: 695-716.
  • Goloboff PA, Catalano SA. 2016. TNT version 1.5, including a full implementation of phylogenetic morphometrics. Cladistics 32: 221-238.
  • Goloboff PA, Farris JS, Nixon KC. 2008. TNT, a free program for phylogenetic analysis. Cladistics 24: 774-786.
  • Goloboff PA, Torres A, Arias JS. 2018. Weighted parsimony outperforms other methods of phylogenetic inference under models appropriate for morphology. Cladistics 34: 407-437.
  • Gray JE. 1821. On the natural arrangement of vertebrose animals. London Medical Repository 5: 296-310.
  • Gray JE. 1825. Outline of an attempt at the disposition of the Mammalia into tribes and families with a list of the genera apparently appertaining to each tribe. Annals of Philosophy 10: 337-344.
  • Greenwood A, Castresana J, Feldmaier-Fuchs G, Paabo S. 2001. A molecular phylogeny of two extinct sloths. Molecular Phylogenetics and Evolution 18: 94-103.
  • Guillerme T, Cooper N. 2016. Effects of missing data on topological inference using a total evidence approach. Molecular Phylogenetics and Evolution 94: 146-158.
  • Guth C. 1961. La region temporale des Edentes. Le Puy: Imprimerie Jeanne d'Arc.
  • Hanson-Smith V, Kolaczkowski B, Thornton JW. 2010. Robustness of ancestral sequence reconstruction to phylogenetic uncertainty. Molecular Biology and Evolution 27: 1988-1999.
  • Harlan R. 1825. Fauna Americana: being a description of the mammiferous animals inhabiting North America. Philadelphia: Anthony Finley.
  • Haro JA, Tauber AA, Krapovickas JM. 2016. The manus of Mylodon darwinii Owen (Tardigrada, Mylodontidae) and its phylogenetic implications. Journal of Vertebrate Paleontology 36: e1188824.
  • Haro JA, Tauber AA, Krapovickas JM. 2017. Thoracic member (pectoral girdle and forelimb) bones of Mylodon darwinii Owen (Xenarthra, Mylodontidae) from the Late Pleistocene of Central Argentina and their phylogenetic implications. PalZ 91: 439-457.
  • Harrison LB, Larsson HCE. 2015. Among-character rate variation distributions in phylogenetic analysis of discrete morphological characters. Systematic Biology 64: 307-324.
  • Hautier L, Gomes Rodrigues H, Billet G, Asher RJ. 2016. The hidden teeth of sloths:evolutionary vestiges and the development of a simplified dentition. Scientific Reports 6: 27763.
  • Hay OP. 1919. Description of some mammalian and fish remains from Florida of probably Pleistocene age.Proceedings of the United States National Museum 56: 103-112.
  • Heath TA, Hedtke SM, Hillis DM. 2008. Taxon sampling and the accuracy of phylogenetic analyses. Journal of Systematics and Evolution 46: 239-257.
  • Heath TA, Huelsenbeck JP, Stadler T. 2014. The fossilized birth-death process for coherent calibration of divergencetime estimates. Proceedings of the National Academy of Sciences 111: E2957-E2966.
  • Hirschfeld SE,Webb SD.1968. Plio-Pleistocene megalonychid sloths of North America. Bulletin of the Florida State Museum. Biological Sciences 12: 213-296.
  • Hoffstetter R. 1949. Nuevas observaciones sobre los Edentata del Pleistoceno superior de la Sierra ecuatoriana. Boletin de Informaciones Cientificas Nacionales de Quito 3: 67-99.
  • Hoffstetter R. 1954a. Phylogenie des Edentes xenarthres. Bulletin du Museum National d'Histoire Naturelle 2: 433-438.
  • Hoffstetter R. 1954b. Les gravigrades (Edentes Xenarthres) des cavernes de Lagoa Santa (Minas Gerais, Bresil). Annales des Sciences Natureles, Zoologie 16: 741-764.
  • Hoffstetter R . 1956 . Contribuition a l'etude des Orophodontoidea, gravigrades cuirasses de la Patagonie. Anales de Paleontologie 42: 27-40.
  • Hoffstetter R. 1961. Description d'un squelette de Planops (Gravigrade du Miocene de Patagonie). Mammalia 25: 57-96.
  • Hoss M, Dilling A, Currant A, Paabo S. 1996. Molecular phylogeny of the extinct ground sloth Mylodon darwinii. Proceedings of the National Academy of Sciences of the USA 93: 181-185.
  • Huelsenbeck JP. 1994. Comparing the stratigraphic record to estimates of phylogeny. Paleobiology 20: 470-483.
  • Huelsenbeck JP, Bollback JP. 2001. Empirical and hierarchical Bayesian estimation of ancestral states. Systematic Biology 50: 351-366.
  • Huelsenbeck JP, Ronquist F. 2001. MRBAYES: Bayesian inference of phylogenetic trees. Bioinformatics 17: 754-755.
  • Illiger JKW. 1811. Prodromus systematis mammalium et avium additis terminis zoographicis utriusque classis, eorumque versione germanica. Berlin: Salfield.
  • De Iuliis G. 1996. A systematic review of the Megatheriinae (Mammalia: Xenarthra: Megatheriidae). Unpublished Ph.D. thesis, University of Toronto.
  • De Iuliis G, Boscaini A, Pujos F, McAfee RK, Cartelle C, Tsuji LJS, Rook L. 2020. On the status of the giant mylodontine sloth Glossotherium wegneri (Spillmann, 1931) (Xenarthra, Folivora) from the Late Pleistocene of Ecuador. Comptes Rendus Palevol 19: 215-232.
  • De Iuliis G, Gaudin TJ, Vicars MJ. 2011. A new genus and species of nothrotheriid sloth (Xenarthra, Tardigrada, Nothrotheriidae) from the Late Miocene (Huayquerian) of Peru. Palaeontology 54: 171-205.
  • De Iuliis G, Pujos F. 2006. On the systematics of Hapalops (Xenarthra: Megatherioidea). Journal of Vertebrate Paleontology 26: 5-5A.
  • De Iuliis G, Pujos F, Cartelle C. 2009. A new ground sloth (Mammalia: Xenarthra) from the Quaternary of Brazil. Comptes Rendus Palevol 8: 705-715.
  • De Iuliis G, Pujos F, Toledo N, Bargo MS, Vizcaino SF. 2014. Eucholoeops Ameghino, 1887 (Xenarthra, Tardigrada, Megalonychidae) from the Santa Cruz Formation, Argentine Patagonia: implications for the systematics of Santacrucian sloths. Geodiversitas 36: 209-255.
  • Joy JB, Liang RH, McCloskey RM, Nguyen T, Poon AFY. 2016. Ancestral reconstruction. PLoS Computational Biology 12: 1-20.
  • Kass RE, Raftery AE. 1995. Bayes factors. Journal of the American Statistical Association 90: 773-795.
  • King B. 2019. Which morphological characters are influential in a Bayesian phylogenetic analysis? Examples from the earliest osteichthyans. Biology Letters 15: 20190288.
  • King B. 2021. Bayesian tip-dated phylogenetics in paleontology: topological effects and stratigraphic fit. Systematic Biology 70: 283-294.
  • Kjer KM, Honeycutt RL. 2007. Site specific rates of mitochondrial genomes and the phylogeny of Eutheria. BMC Evolutionary Biology 7: 1-9.
  • Kraglievich L. 1934. Contribucion al conocimiento de Mylodon darwini Owen y especies afines. Revista del Museo de La Plata 34: 255-292.
  • Kuck P, Mayer C, Wagele JW, Misof B. 2012. Long branch effects distort maximum likelihood phylogenies in simulations despite selection of the correct model. PLoS One 7: e36593.
  • Lee MSY, Cau A, Naish D, Dyke GJ. 2014. Morphological clocks in paleontology, and a Mid-Cretaceous origin of crown Aves. Systematic Biology 63: 442-449.
  • Leidy J. 1868. Notice of some vertebrate remains from the West Indian islands. Proceedings of the Academy of Natural Sciences of Philadelphia 20: 178-180.
  • Lemmon AR, Moriarty EC. 2004. The importance of proper model assumption in Bayesian phylogenetics. Systematic Biology 53: 265-277.
  • Lewis PO. 2001. A likelihood approach to estimating phylogeny from discrete morphological character data. Systematic Biology 50: 913-925.
  • Linnaeus C. 1758. Systema Naturae per regna tria naturae, secundum classes, ordines, genera, species, cum characteribus, differentiis, synonymis, locis. Stockholm: Salvius.
  • Lloyd GT. 2016. Estimating morphological diversity and tempo with discrete character-taxon matrices: implementation, challenges, progress, and future directions. Biological Journal of the Linnean Society 118: 131-151.
  • Lucena DAA, Almeida EAB. 2022. Morphology and Bayesian tip-dating recover deep Cretaceous-age divergences among major chrysidid lineages (Hymenoptera: Chrysididae). Zoological Journal of the Linnean Society 194: 1-44.
  • Lund PW. 1842. Blik paa Brasiliens dyreverden for sidste jordomvaeltning. Anden afhandling: patteedyrene. Danske Videnskabernes Selskabs Naturvidenskabelig og Mathematisk Afhandlinger 9: 137-208.
  • Luo A, Duchene DA, Zhang C, Zhu CD, Ho SYW. 2020. A simulation-based evaluation of tip-dating under the fossilized birth-death process. Systematic Biology 69: 325-344.
  • Lydekker R. 1899. Class Mammalia - Orders Edentata, Cetacea, and Sirenia. In: Nicholson HA, Lydekker R, eds. Manual of palaeontology. Edinburgh: Blackwood and Sons, 1289-1311.
  • MacPhee RDE, Iturralde-Vinent MA. 1995. Origin of the Greater Antillean land mammal fauna. 1: New Tertiary fossils from Cuba and Puerto Rico. American Museum Novitates 3141: 1-30.
  • Maddison WP, Maddison DR. 2019. Mesquite: a modular system for evolutionary analysis. Available at: http://www. mesquiteproject.org
  • Matzke NJ, Wright A. 2016. Inferring node dates from tip dates in fossil Canidae: the importance of tree priors. Biology Letters 12: 20160328.
  • McDonald HG. 2012. Evolution of the pedolateral foot in ground sloths: patterns of change in the astragalus. Journal of Mammalian Evolution 19: 209-215.
  • McDonald HG, Arroyo-Cabrales J, Alarcon-Duran I, Espinosa-Martinez DV. 2020. First record of Meizonyx salvadorensis (Mammalia: Xenarthra: Pilosa) from the Late Pleistocene of Mexico and its evolutionary implications. Journal of Systematic Palaeontology 18: 1829-1851.
  • McDonald HG, Carranza-Castaneda O. 2017. Increased xenarthran diversity of the Great American biotic interchange: a new genus and species of ground sloth (Mammalia, Xenarthra, Megalonychidae) from the Hemphillian (Late Miocene) of Jalisco, Mexico. Journal of Paleontology 91: 1069-1082.
  • McDonald HG, Chatters JC, Gaudin TJ. 2017. A new genus of megalonychid ground sloth (Mammalia, Xenarthra) from the Late Pleistocene of Quintana Roo, Mexico. Journal of Vertebrate Paleontology 37: e1307206.
  • McDonald HG, De Iuliis G. 2008. Fossil history of sloths. In: Vizcaino SF, Loughry WJ, eds. The biology of the Xenarthra. Gainesville: University Press of Florida, 39-55.
  • McDonald HG, de Muizon C. 2002. The cranial anatomy of Thalassocnus (Xenarthra, Mammalia), a derived nothrothere from the Neogene of the Pisco Formation (Peru). Journal of Vertebrate Paleontology 22: 349-365.
  • McDonald HG, Perea D. 2002. The large scelidothere Catonyx tarijensis (Xenarthra, Mylodontidae) from the Pleistocene of Uruguay. Journal of Vertebrate Paleontology 22: 677-683.
  • McDonald HG, Rincon AD, Gaudin TJ. 2013. A new genus of megalonychid sloth (Mammalia, Xenarthra) from the Late Pleistocene (Lujanian) of Sierra de Perija, Zulia State, Venezuela. Journal of Vertebrate Paleontology 33: 1226-1238.
  • McKenna MC, Bell SK. 1997. Classification of mammals: above the species level. New York: Columbia University Press.
  • McKenna MC, Wyss AR, Flynn JJ. 2006. Paleogene pseudoglyptodont xenarthrans from central Chile and Argentine Patagonia. American Museum Novitates 3536: 1-18.
  • Miller GS. 1929. A second collection of mammals from caves near St. Michel, Haiti. Smithsonian Miscellaneous Collections 81: 1-30.
  • Miller MA, Pfeiffer W, Schwartz T. 2010. Creating the CIPRES Science Gateway for inference of large phylogenetic trees. In: 2010 Gateway Computing Environments Workshop, GCE 2010, New Orleans, LA, 1-8
  • Mino-Boilini AR. 2012. Sistematica y evolucion de los Scelidotheriinae (Xenarthra,Mylodontidae)cuaternarios de la Argentina. Importancia bioestratigrafica, paleobiogeografica y peleoambiental. Unpublished Ph.D. thesis, Universidad Nacional de La Plata.
  • Mino-Boilini AR, Carlini AA, Scillato-Yane GJ. 2014. Revision sistematica y taxonomica del genero Scelidotherium Owen, 1839 (Xenarthra, Phyllophaga, Mylodontidae). Revista Brasileira de Paleontologia 17: 43-58.
  • Mongiardino Koch N, Garwood RJ, Parry LA. 2021. Fossils improve phylogenetic analyses of morphological characters. Proceedings of the Royal Society B: Biological Sciences 288: 20210044.
  • Mounce RCP, Sansom R, Wills MA. 2016. Sampling diverse characters improves phylogenies: craniodental and postcranial characters of vertebrates often imply different trees. Evolution 70: 666-686.
  • de Muizon C, McDonald HG. 1995. An aquatic sloth from the Pliocene of Peru. Nature 375: 224-227.
  • de Muizon C, McDonald HG, Salas R, Urbina M. 2003. A new early species of the aquatic sloth Thalassocnus (Mammalia, Xenarthra) from the Late Miocene of Peru. Journal of Vertebrate Paleontology 23: 886-894.
  • de Muizon C, McDonald HG, Salas R, Urbina M. 2004a. The evolution of feeding adaptations of the aquatic sloth Thalassocnus. Journal of Vertebrate Paleontology 24: 398-410.
  • de Muizon C, McDonald HG, Salas R, Urbina M. 2004b. The youngest species of the aquatic sloth Thalassocnus and a reassessment of the relationship of the nothrothere sloths (Mammalia: Xenarthra). Journal of Vertebrate Paleontology 24: 387-397.
  • Murphy JL, Puttick MN, O'Reilly JE, Pisani D, Donoghue PCJ. 2021. Empirical distributions of homoplasy in morphological data. Palaeontology 64: 505-518.
  • Naples VL, McAfee RK. 2012. Reconstruction of the cranial musculature and masticatory function of the Pleistocene Panamerican ground sloth Eremotherium laurillardi (Mammalia, Xenarthra, Megatheriidae). Historical Biology 24: 187-206.
  • Naples VL, McAfee RK. 2014. Chewing through the Miocene: an examination of the feeding musculature in the ground sloth Hapalops from South America (Mammalia: Pilosa). F1000Research 3: 861-826.
  • Negri F, Ferigolo J. 2004. Urumacotheriinae, nova subfamilia de Mylodontidae (Mammalia, Tardigrada) do Mioceno superior-Plioceno, America do Sul. Revista Brasileira de Paleontologia 7: 281-288.
  • Nieto GL, Haro JA, McDonald HG, Mino-Boilini AR, Tauber AA, Krapovickas JM , Fabianelli MN , Rosas FM . 2021 . The skeleton of the manus of Scelidotherium (Xenarthra, Mylodontidae) specimens from the Pleistocene of the Province of Cordoba, Argentina, and its systematic implications. Journal of Mammalian Evolution 28: 221-243.
  • Nyakatura JA. 2012. The convergent evolution of suspensory posture and locomotion in tree sloths. Journal of Mammalian Evolution 19: 225-234.
  • Nylander JAA, Ronquist F, Huelsenbeck JP, Nieves- Aldrey JL. 2004. Bayesian phylogenetic analysis of combined data. Systematic Biology 53: 47-67.
  • Oliveira EV, Bergqvist LP. 1998. A new Paleocene armadillo (Mammalia, Dasypodoidea) from the Itaborai Basin, Brazil. Paleogeno de America del Sur y de la Peninsula Antartica. Asociacion Paleontologica Argentina. Publicacion Especial 5: 35-40.
  • O'Reilly JE, Donoghue PCJ. 2018. The efficacy of consensus tree methods for summarizing phylogenetic relationships from a posterior sample of trees estimated from morphological data. Systematic Biology 67: 354-362.
  • Owen R. 1839. Fossil Mammalia (3). In: Darwin C, ed. The zoology of the voyage of H.M.S. Beagle. London: Smith Elder and Co., 65-80.
  • Patterson B, Pascual R. 1968. The fossil mammal fauna of South America. Quarterly Review of Biology 43: 409-451.
  • Patterson B, Segall W, Turnbull WD, Gaudin TJ. 1992. The ear region in xenarthrans (=Edentata: Mammalia). Part II. Pilosa (sloths, anteaters), palaeanodonts, and a miscellany. Fieldiana Geology 24: 1-79.
  • de Paula Couto C. 1979. Tratado de Paleomastozoologia. Rio de Janeiro: Academia Brasileira de Ciencias.
  • Poinar H, Kuch M, McDonald G, Martin P, Paabo S. 2003. Nuclear gene sequences from a Late Pleistocene sloth coprolite. Current Biology 13: 1150-1152.
  • Porto DS, Almeida EAB, Pennell MW. 2021. Investigating morphological complexes using informational dissonance and Bayes factors: a case study in corbiculate bees. Systematic Biology 70: 295-306.
  • Prendini L. 2001. Species or supraspecific taxa as terminals in cladistic analysis? Groundplans versus exemplars revisited. Systematic Biology 50: 290-300.
  • Presslee S , Slater GJ, Pujos F , Forasiepi AM , Fischer R, Molloy K, Mackie M, Olsen JV, Kramarz A, Taglioretti M, Scaglia F, Lezcano M, Lanata JL, Southon J, Feranec R, Bloch J, Hajduk A, Martin FM, Salas Gismondi R , Reguero M, de Muizon C, Greenwood A, Chait BT, Penkman K, Collins M, MacPhee RDE. 2019. Palaeoproteomics resolves sloth relationships. Nature Ecology & Evolution 3: 1121-1130.
  • Pujos F. 2006. Megatherium celendinense sp. nov. from the Pleistocene of the Peruvian Andes and the phylogenetic relationships of megatheriines. Palaeontology 49: 285-306.
  • Pujos F, Ciancio MR, Forasiepi AM, Pujos M, Candela AM, Vera B, Reguero MA, Combina AM, Cerdeno E. 2021. The Late Oligocene xenarthran fauna of Quebrada Fiera (Mendoza, Argentina) and its implications for sloth origins and the diversity of Palaeogene cingulates. Papers in Palaeontology 7: 1613-1656.
  • Pujos F, Gaudin TJ, De Iuliis G, Cartelle C. 2012. Recent advances on variability, morpho-functional adaptations, dental terminology, and evolution of sloths. Journal of Mammalian Evolution 19: 159-169.
  • Pujos F, De Iuliis G. 2007. Late Oligocene Megatherioidea fauna (Mammalia: Xenarthra) from Salla-Luribay (Bolivia): new data on basal sloth radiation and Cingulata- Tardigrada split. Journal of Vertebrate Paleontology 27: 132-144.
  • Pujos F, De Iuliis G, Argot C, Werdelin L. 2007. A peculiar climbing Megalonychidae from the Pleistocene of Peru and its implication for sloth history. Zoological Journal of the Linnean Society 149: 179-235.
  • Pujos F, De Iuliis G, Cartelle C. 2017. A paleogeographic overview of tropical fossil sloths: towards an understanding of the origin of extant suspensory sloths? Journal of Mammalian Evolution 24: 19-38.
  • Pujos F, De Iuliis G, Mamani Quispe B, Adnet S, Andrade Flores R, Billet G, Fernandez-Monescillo M, Marivaux L, Munch P, Pramparo MB, Antoine PO. 2016. A new nothrotheriid xenarthran from the Early Pliocene of Pomata-Ayte (Bolivia): new insights into the caniniformmolariform transition in sloths. Zoological Journal of the Linnean Society 178: 679-712.
  • Pujos F, De Iuliis G, Mamani Quispe B, Flores RA. 2014. Lakukullus anatisrostratus, gen. et sp. nov., a new massive nothrotheriid sloth (Xenarthra, Pilosa) from the Middle Miocene of Bolivia. Journal of Vertebrate Paleontology 34: 1243-1248.
  • Pujos F, De Iuliis G, Quispe BM. 2011. Hiskatherium saintandrei, gen. et sp. nov.: an unusual sloth from the Santacrucian of Quebrada Honda (Bolivia) and an overview of Middle Miocene, small megatherioids. Journal of Vertebrate Paleontology 31: 1131-1149.
  • Puttick MN, O'Reilly JE, Pisani D, Donoghue PCJ. 2019. Probabilistic methods outperform parsimony in the phylogenetic analysis of data simulated without a probabilistic model. Palaeontology 62: 1-17.
  • Pyron RA. 2011. Divergence time estimation using fossils as terminal taxa and the origins of Lissamphibia. Systematic Biology 60: 466-481.
  • R Core Team. 2021. R: a language and environment for statistical computing. Available at: https://www.r-project. org/
  • Racco A, Fernicola JC, Bargo MS, Vizcaino SF, De Iuliis G. 2018. On the type of Schismotherium fractum Ameghino, 1887 (Xenarthra, Folivora, Megatherioidea) from the Early Miocene Santa Cruz Formation (Santa Cruz Province, Argentina). Ameghiniana 55: 117-125.
  • Raj Pant S, Goswami A, Finarelli JA. 2014. Complex body size trends in the evolution of sloths (Xenarthra: Pilosa). BMC Evolutionary Biology 14: 1-8.
  • Rambaut A, Drummond AJ, Xie D, Baele G, Suchard MA. 2018. Posterior summarization in Bayesian phylogenetics using Tracer 1.7. Systematic Biology 67: 901-904.
  • Revelle W. 2020. Psych: procedures for psychological, psychometric, and personality research. Available at: https:// cran.r-project.org/package=psych
  • Rincon AD, Lemoine LA, McDonald HG. 2021. A new addition to Pleistocene megalonychid sloth diversity in the northern Neotropics. Journal of South American Earth Sciences 110: 103379.
  • Rincon AD, McDonald HG, Solorzano A, Flores MN, Ruiz-Ramoni D. 2015. A new enigmatic Late Miocene mylodontoid sloth from northern South America. Royal Society Open Science 2: 140256.
  • Rincon AD, Solorzano A, McDonald HG, Montellano- Ballesteros M. 2018. Two new megalonychid sloths (Mammalia: Xenarthra) from the Urumaco Formation (Late Miocene), and their phylogenetic affinities. Journal of Systematic Palaeontology 17: 409-421.
  • Rinderknecht A, Bostelmann TE, Perea D, Lecuona G. 2010. A new genus and species of Mylodontidae (Mammalia: Xenarthra) from the Late Miocene of southern Uruguay, with comments on the systematics of the Mylodontinae. Journal of Vertebrate Paleontology 30: 899-910.
  • Rinderknecht A, Perea D, Mcdonald HG. 2007. A new Mylodontinae (Mammalia, Xenarthra) from the Camacho Formation (late Miocene), Uruguay. Journal of Vertebrate Paleontology 27: 744-747.
  • Robinson DF, Foulds LR. 1981. Comparison of phylogenetic trees. Mathematical Biosciences 53: 131-147.
  • Roman-Carrion JL, Brambilla L. 2019. Comparative skull osteology of Oreomylodon wegneri (Xenarthra, Mylodontinae): defining the taxonomic status of the Ecuadorian endemic mylodontid. Journal of Vertebrate Paleontology 39: e1674860.
  • Ronquist F. 2004. Bayesian inference of character evolution. Trends in Ecology and Evolution 19: 475-481.
  • Ronquist F, Huelsenbeck JP. 2003. MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics 19: 1572-1574.
  • Ronquist F, Klopfstein S, Vilhelmsen L, Schulmeister S, Murray DL, Rasnitsyn AP. 2012a. A total-evidence approach to dating with fossils, applied to the early radiation of the Hymenoptera. Systematic Biology 61: 973-999.
  • Ronquist F, Lartillot N, Phillips MJ. 2016. Closing the gap between rocks and clocks using total-evidence dating. Philosophical Transactions of the Royal Society B: Biological Sciences 371: 20150136.
  • Ronquist F, Teslenko M, Van der Mark P, Ayres DL, Darling A, Hohna S, Larget B, Liu L, Suchard MA, Huelsenbeck JP. 2012b. MrBayes 3.2: efficient Bayesian phylogenetic inference and model choice across a large model space. Systematic Biology 61: 539-542.
  • Rosa BB, Melo GAR, Barbeitos MS. 2019. Homoplasybased partitioning outperforms alternatives in Bayesian analysis of discrete morphological data. Systematic Biology 68: 657-671.
  • Rovereto C. 1914. Los estratos araucanos y sus fosiles. Anales del Museo Nacional de Historia Natural de Buenos Aires 25: 1-247.
  • Saint-Andre PA, Pujos F, Cartelle C, De Iuliis G, Gaudin TJ, McDonald HG, Mamani Quispe B. 2010. Nouveaux paresseux terrestres (Mammalia, Xenarthra, Mylodontidae) du Neogene de l'Altiplano bolivien. Geodiversitas 32: 255-306.
  • Sanderson MJ, Donoghue MJ. 1989. Patterns of variation in levels of homoplasy. Evolution 43: 1781-1795.
  • Sansom RS, Choate PG, Keating JN, Randle E. 2018. Parsimony, not Bayesian analysis, recovers more stratigraphically congruent phylogenetic trees. Biology Letters 14: 20180263.
  • Schliep KP. 2011. Phangorn: phylogenetic analysis in R. Bioinformatics 27: 592-593.
  • Schweitzer MH, Schroeter ER, Cleland TP, Zheng W. 2019. Paleoproteomics of Mesozoic dinosaurs and other Mesozoic fossils. Proteomics 19: 1800251.
  • Scillato-Yane GJ, Carlini AA. 1998. Nuevos Xenarthra del Friasense (Mioceno Medio) de Argentina. Studia Geologica Salmanticensia 34: 43-67.
  • Scott WB. 1903. Mammalia of the Santa Cruz beds. Part I. Edentata. In: Scott WB, ed. Reports of the Princeton University Expeditions to Patagonia 1896-1899. Princeton: Princeton University Press, 1-364.
  • Shockey BJ, Anaya F. 2011. Grazing in a new Late Oligocene mylodontid sloth and a mylodontid radiation as a component of the Eocene-Oligocene faunal turnover and the early spread of grasslands/savannas in South America. Journal of Mammalian Evolution 18: 101-115.
  • Simoes TR, Caldwell MW, Pierce SE. 2020a. Sphenodontian phylogeny and the impact of model choice in Bayesian morphological clock estimates of divergence times and evolutionary rates. BMC Biology 18: 1-30.
  • Simoes TR, Vernygora O, Caldwell MW, Pierce SE. 2020b. Megaevolutionary dynamics and the timing of evolutionary innovation in reptiles. Nature Communications 11: 1-14.
  • Simpson GG. 1948. The beginning of the age of mammals in South America. Bulletin of the American Museum of Natural History 91: 1-232.
  • Slater GJ, Cui P, Forasiepi AM, Lenz D, Tsangaras K, Voirin B, de Moraes-Barros N, MacPhee RDE, Greenwood AD. 2016. Evolutionary relationships among extinct and extant sloths: the evidence of mitogenomes and retroviruses. Genome Biology and Evolution 8: 607-621.
  • Smith MR. 2019. Bayesian and parsimony approaches reconstruct informative trees from simulated morphological datasets. Biology Letters 15: 20180632.
  • Smith ND, Turner AH. 2005. Morphology's role in phylogeny reconstruction: perspectives from paleontology. Systematic Biology 54: 166-173.
  • Spillman F. 1948. Beitrge zur Kenntnis eines neuen gravigraden Riesensteppentieres (Eremotherium carolinenese gen. et. spec. nov.), seines Lebensraumes und seiner Lebensweise. Palaeobiologica 8: 231-279.
  • Springer MS, Meredith RW, Teeling EC,Murphy WJ. 2013. Technical comment on 'The placental mammal ancestor and the post-K-Pg radiation of placentals'. Science 341: 613.
  • Springer MS, Stanhope MJ, Madsen O, de Jong WW. 2004. Molecules consolidate the placental mammal tree. Trends in Ecology & Evolution 19: 430-438.
  • Steadman DW, Martin PS, MacPhee RDE, Jull AJT, McDonald HG, Woods CA, Iturralde-Vinent M, Hodgins GWL. 2005. Asynchronous extinction of Late Quaternary sloths on continents and islands. Proceedings of the National Academy of Sciences of the USA 102: 11763-11768.
  • Stinnesbeck SR, Frey E, Olguin JA, Stinnesbeck W, Zell P , Mallison H , Gonzalez Gonzalez A , Aceves Nunez E, Velazquez Morlet A, Terrazas Mata A, Benavente Sanvicente M, Hering F, Rojas Sandoval C. 2017. Xibalbaonyx oviceps, a new megalonychid ground sloth (Folivora, Xenarthra) from the Late Pleistocene of the Yucatan Peninsula, Mexico, and its paleobiogeographic significance. PalZ 91: 245-271.
  • Stinnesbeck SR, Stinnesbeck W, Frey E, Aviles Olguin J, Gonzalez A G. 2021 . Xibalbaonyx exinferis n. sp. (Megalonychidae), a new Pleistocene ground sloth from the Yucatan Peninsula, Mexico. Historical Biology 33: 1952-1963.
  • Stock C. 1925. Cenozoic gravigrade edentates of western North America, with special reference to the Pleistocene Megalonychinae and Mylodontidae of Rancho La Brea. Carnegie Institution of Washington Publications 331: 1-206.
  • Tarasov S, Genier F. 2015. Innovative Bayesian and parsimony phylogeny of dung beetles (Coleoptera, Scarabaeidae, Scarabaeinae) enhanced by ontology-based partitioning of morphological characters. PLoS One 10: e0116671.
  • Toledo N, Bargo MS, Vizcaino SF. 2013. Muscular reconstruction and functional morphology of the forelimb of Early Miocene sloths (Xenarthra, Folivora) of Patagonia. The Anatomical Record 296: 305-325.
  • Toledo N, Bargo MS, Vizcaino SF. 2015a. Muscular reconstruction and functional morphology of the hind limb of Santacrucian (Early Miocene) sloths (Xenarthra, Folivora) of Patagonia. The Anatomical Record 298: 842-864.
  • Toledo N, Bargo MS, Vizcaino SF, De Iuliis G, Pujos F. 2015b. Evolution of body size in anteaters and sloths (Xenarthra, Pilosa): phylogeny, metabolism, diet and substrate preferences. Earth and Environmental Science Transactions of the Royal Society of Edinburgh 106: 289-301.
  • Toledo N, De Iuliis G, Vizcaino SF, Bargo MS. 2018. The concept of a pedolateral pes revisited: the giant sloths Megatherium and Eremotherium (Xenarthra, Folivora, Megatheriinae) as a case study. Journal of Mammalian Evolution 25: 525-537.
  • Tuffley C, Steel M. 1997. Links between maximum likelihood and maximum parsimony under a simple model of site substitution. Bulletin of Mathematical Biology 59: 581-607.
  • Upham NS, Esselstyn JA, Jetz W. 2019. Inferring the mammal tree: species-level sets of phylogenies for questions in ecology, evolution, and conservation. PLoS Biology 17: e3000494.
  • Varela L, Tambusso PS, McDonald HG, Farina RA. 2019. Phylogeny, macroevolutionary trends and historical biogeography of sloths:insights from a Bayesian morphological clock analysis. Systematic Biology 68: 204-218.
  • Villarroel C. 2000. Un nuevo Mylodontinae (Xenarthra, Tardigrada) en la fauna de La Venta, Mioceno de Colombia: el estado actual de la familia Orophodontidae. Revista de la Academia Colombiana de Ciencias Exactas Fisicas y Naturales 24: 117-127.
  • Wagele J, Mayer C. 2007. Visualizing differences in phylogenetic information content of alignments and distinction of three classes of long-branch effects. BMC Evolutionary Biology 7: 147.
  • Wagler JG. 1830. Naturliches System der Amphibien: mit vorangehender Classification der Saugethiere und Vogel ein Beitrag zur vergleichenden Zoologie. Munich: J.G. Cotta'scchen Buchhandlung.
  • Wagner PJ. 2012. Modelling rate distributions using character compatibility: implications for morphological evolution among fossil invertebrates. Biology Letters 8: 143-146.
  • Warren DL, Geneva AJ, Lanfear R. 2017. RWTY (R We There Yet): an R package for examining convergence of Bayesian phylogenetic analyses. Molecular Biology and Evolution 34: 1016-1020.
  • Webb SD. 1985. The interrelationships of tree sloths and ground sloths. In: Montgomery GG, ed. The evolution and ecology of armadillos, sloths and vermilinguas. Washington, DC: Smithsonian Institution Press, 105-112.
  • White JL, MacPhee RDE. 2001. Sloths of the West Indies: a systematic and phylogenetic review. In: Woods CA, Sergile FE, eds. Biogeography of the West Indies: patterns and perspectives. New York: CRC Press, 201-235.
  • Wickham H. 2016. Ggplot2: elegant graphics for data analysis. Available at: https://ggplot2.tidyverse.org
  • Wilcoxon F. 1945. Individual comparisons by ranking methods. Biometrics Bulletin 1: 80.
  • Wills MA. 1999. Congruence between phylogeny and stratigraphy: randomization tests and the gap excess ratio. Systematic Biology 48: 559-580.
  • Xie W, Lewis PO, Fan Y, Kuo L, Chen MH. 2011. Improving marginal likelihood estimation for Bayesian phylogenetic model selection. Systematic Biology 60: 150-160.
  • Yang Z, Kumar S, Nei M. 1995. A new method of inference of ancestral nucleotide and amino acid sequences. Genetics 141: 1641-1650.
  • Yu G, Smith DK, Zhu H, Guan Y, Lam TT. 2017. Ggtree: an R package for visualization and annotation of phylogenetic trees with their covariates and other associated data. Methods in Ecology and Evolution 8: 28-36.
  • Zhang C, Stadler T, Klopfstein S, Heath TA, Ronquist F. 2016. Total-evidence dating under the fossilized birth-death process. Systematic Biology 65: 228-249.
  • Zhang C, Wang M. 2019. Bayesian tip dating reveals heterogeneous morphological clocks in Mesozoic birds. Royal Society Open Science 6: 182062.
  • Zou Z, Zhang J. 2016. Morphological and molecular convergences in mammalian phylogenetics. Nature Communications 7: 12758.