Published February 20, 2021 | Version v1
Journal article Restricted

Cuticular Hydrocarbon Profile Analyses Help Clarify the Species Identity of Dry-Mounted Cuckoo Wasps (Hymenoptera: Chrysididae), Including Type Material, and Reveal Evidence for a Cryptic Species

  • 1. Natural History Museum, University of Tartu, Vanemuise 46, Tartu 51003, Estonia,
  • 2. Department of Animal Ecology and Tropical Biology, Biocentre, University of Würzburg, Am Hubland, 97074 Würzburg, Germany,
  • 3. Fredriksberg/Baskarp, 566 92 Habo, Sweden,
  • 4. Finnish Museum of Natural History, Zoology Unit, PO Box 17, FI-00014 University of Helsinki, Helsinki, Finland,
  • 5. Via Belvedere 8/d, I-20881 Bernareggio (MB), Italy,
  • 6. Norwegian University of Science and Technology (NTNU), Department of Natural History, NO-7491 Trondheim, Norway,
  • 7. Department of Evolutionary Biology and Ecology, Institute of Biology I (Zoology), Albert Ludwig University of Freiburg, Freiburg i. Br., Germany, and

Description

Soon, Villu, Castillo-Cajas, Ruth F., Johansson, Niklas, Paukkunen, Juho, Rosa, Paolo, Ødegaard, Frode, Schmitt, Thomas, Niehuis, Oliver (2021): Cuticular Hydrocarbon Profile Analyses Help Clarify the Species Identity of Dry-Mounted Cuckoo Wasps (Hymenoptera: Chrysididae), Including Type Material, and Reveal Evidence for a Cryptic Species. Insect Systematics and Diversity (AIFB) 5 (1), No. 3: 1-12, DOI: 10.1093/isd/ixab002, URL: http://dx.doi.org/10.1093/isd/ixab002

Files

Restricted

The record is publicly accessible, but files are restricted to users with access.

Linked records

Additional details

Identifiers

LSID
urn:lsid:plazi.org:pub:FFCDD62EFFEBAE2AFFBD5823445DB450

References

  • Akino, T., M. Terayama, S. Wakamura, and R. Yamaoka. 2002. Intraspecific variation of cuticular hydrocarbon composition in Formica japonica Motschoulsky (Hymenoptera: Formicidae). Zool. Sci. 19: 1155-1165.
  • Astrin, J. J., and P. E. Stuben. 2008. Phylogeny in cryptic weevils: molecules, morphology and new genera of Western Palaearctic Cryptorhynchinae (Coleoptera: Curculionidae). Invertebr. Syst. 22: 503-522.
  • Bagneres, A.-G., and C. Wicker-Thomas. 2010. Chemical taxonomy with hydrocarbons, pp. 121-162. In G. J. Blomquist and A. G. Bagneres (eds.), Insect hydrocarbons: biology, biochemistry, and chemical ecology. Cambridge University Press, Cambridge, United Kingdom.
  • Bien, T., J. Gadau, A. Schnapp, J. Y. Yew, C. Sievert, and K. Dreisewerd. 2019. Detection of very long-chain hydrocarbons by laser mass spectrometry reveals novel species-, sex-, and age-dependent differences in the cuticular profiles of three Nasonia species. Anal. Bioanal. Chem. 411: 2981-2993.
  • Blomquist, G. J., and A. G. Bagneres. 2010. Insect hydrocarbons: biology, biochemistry, and chemical ecology. Cambridge University Press, Cambridge, United Kingdom.
  • Carlson, D. A., C. S. Roan, R. A. Yost, and J. Hector. 1989. Dimethyl disulfide derivatives of long chain alkenes, alkadienes, and alkatrienes for gas chromatography/mass spectrometry. Anal. Chem. 61: 1564-1571.
  • Carlson, D. A., U. R. Bernier, and B. D. Sutton. 1998. Elution patterns from capillary GC for methyl-branched alkanes. J. Chem. Ecol. 24: 1845-1865.
  • Clarke, K. R. 1993. Non-parametric multivariate analyses of changes in community structure.Aust. J. Ecol. 18: 117-143.
  • Dufresnes, C., I. Strachinis, E. Tzoras, S. N. Litvinchuk, and M. Denoel. 2019. Call a spade a spade: taxonomy and distribution of Pelobates, with description of a new Balkan endemic. ZooKeys 859: 131-158.
  • Eberle, J., C. Mayer, D. Ahrens, O. Niehuis, and B. Misof. 2020. A plea for standardized nuclear markers in metazoan DNA taxonomy. Trends Ecol. Evol. 35: 336-345.
  • Folmer, O., M. Black, W. Hoeh, R. Lutz, and R. Vrijenhoek. 1994. DNA primers for amplification of mitochondrial cytochrome c oxidase subunit I from diverse metazoan invertebrates. Mol. Mar. Biol.Biotechnol.3: 294-299.
  • Guillem, R. M., F. P. Drijfhout, and S. J. Martin. 2012. Using chemo-taxonomy of host ants to help conserve the large blue butterfly. Biol. Conserv. 148: 39-43.
  • Haverty, M. I., L. J. Nelson, and M. Page. 1990. Cuticular hydrocarbons of four populations of Coptotermes formosanus Shiraki in the United States. J. Chem. Ecol. 16: 1635-1647.
  • Hebets, E. A., and D. R. Papaj. 2005. Complex signal function: developing a framework of testable hypotheses. Behav. Ecol. Sociobiol. 57: 197-214.
  • Hebert, P. D. N., A. Cywinska, S. L. Ball, and J. R. deWaard. 2003. Biological identifications through DNA barcodes. Proc. Biol. Sci. 270: 313-321.
  • Ivanova, N. V., J. R. deWaard, and P. D. N. Hebert. 2006. An inexpensive, automation-friendly protocol for recovering high-quality DNA. Mol. Ecol. Notes. 6: 998-1002.
  • Kearse, M., R. Moir, A. Wilson, S. Stones-Havas, M. Cheung, S. Sturrock, S. Buxton, A. Cooper, S. Markowitz, C. Duran, T. Thierer, et al. 2012. Geneious basic: an integrated and extendable desktop software platform for the organization and analysis of sequence data. Bioinformatics 28: 1647-1649.
  • Kimsey, L. S., and R. M. Bohart. 1991 (1990). The chrysidid wasps of the world. Oxford Press, New York, NY.
  • Kimura, M. 1980. A simple method for estimating evolutionary rate of base substitutions through comparative studies of nucleotide sequences. J. Mol. Evol. 16: 111-120.
  • Kovats, E. 1958. Gas-chromatographische charakterisierung organischer Verbindungen. Teil 1: Retentionsindices aliphatischer Halogenide, Alkohole, Aldehyde und Ketone. Helv. Chim. Acta. 41: 1915-1932.
  • Kruskal, J. B. 1964a. Multidimensional scaling by optimizing goodness of fit to a nonmetric hypothesis. Psychometrika. 29: 1-27.
  • Kruskal, J. B. 1964b. Nonmetric multidimensional scaling: A numerical method. Psychometrika. 29: 115-129.
  • Kumar, S., G. Stecher, M. Li, C. Knyaz, and K. Tamura. 2018. MEGA X: molecular evolutionary genetics analysis across computing platforms. Mol. Biol. Evol. 35: 1547-1549.
  • Kurina, O., Ounap, E., and Poldmaa, K. 2015. Two new Neuratelia Rondani (Diptera, Mycetophilidae) species from Western Palaearctic: a case of limited congruence between morphology and DNA sequence data. ZooKeys 496: 105-129.
  • Liang, D., and J. Silverman. 2000. "You are what you eat": diet modifies cuticular hydrocarbons and nestmate recognition in the Argentine ant, Linepithema humile. Naturwissenschaften 87: 412-416.
  • Linsenmaier, W. 1959. Revision der Familie Chrysididae (Hymenoptera) mit besonderer Brucksichtigung der europaischen Spezies. Mitt. Schweiz. Entomol. Ges. 32: 1-232.
  • Linsenmaier, W. 1997. Die Goldwespen der Schweiz. Veroff. Natur-Mus. Luzern 9: 1-139.
  • Lucas, C., D. Fresneau, K. Kolmer, J. Heinze, J. H. Delabie, and D. B. Pho. 2002. A multidisciplinary approach to discriminating different taxa in the species complex Pachycondyla villosa (Formicidae). Biol. J. Linn. Soc. 75: 249-259.
  • Martin, S. J., H. Helanterae, and F. P. Drijfhout. 2008. Evolution of speciesspecific cuticular hydrocarbon patterns in Formica ants. Biol. J. Linn. Soc. 95: 131-140.
  • Martin, S. J., W. Zhong, and F. P. Drijfhout. 2009. Long-term stability of hornet cuticular hydrocarbons facilitates chemotaxonomy using museum specimens. Biol. J. Linn. Soc. 96: 732-737.
  • Niehuis, O. 2000. The European species of the Chrysis ignita group: revision of the Chrysis angustula aggregate (Hymenoptera: Chrysididae). Deut. entomol. Z. 47: 181-201.
  • Oksanen, J., F. G. Blanchet, R. Kindt, P. Legendre, P. R. Minchin, R. B. O'Hara, G. L. Simpson, P. Solymos, M. H. H. Stevens, and H. Wagner. 2013. Vegan: community ecology package (version 2.0.10). https://cran.r-project.org/ web/packages/vegan/index.html
  • Orlovskyt e, S., E. Budrys, A. Budrien e, R. Radzevi c i u t e, and V. Soon. 2016. Sibling species in the Chrysis ignita complex: molecular, morphological and trophic differentiation of Baltic species, with a description of two new cryptic species (Hymenoptera: Chrysididae): Chrysis ignita complex. Syst. Entomol. 41: 771-793.
  • Page, M., L. J. Nelson, G. J. Blomquist, and S. J. Seybold. 1997. Cuticular hydrocarbons as chemotaxonomic characters of pine engraver beetles (Ips spp.) in the grandicollis subgeneric group. J. Chem. Ecol. 23: 1053-1099.
  • Paukkunen, J., A. Berg, V. Soon, F. Odegaard, and P. Rosa. 2015. An illustrated key to the cuckoo wasps (Hymenoptera, Chrysididae) of the Nordic and Baltic countries, with description of a new species. ZooKeys. 548: 1-116.
  • Pauli, T., R. F. Castillo-Cajas, P. Rosa, S. Kukowka, A. Berg, E. van den Berghe, F. Fornoff, S. Hopfenmuller, M. Niehuis, R. S. Peters, et al. 2019. Phylogenetic analysis of cuckoo wasps (Hymenoptera: Chrysididae) reveals a partially artificial classification at the genus level and a species-rich clade of bee parasitoids. Syst. Entomol. 44: 322-335.
  • R Development Core Team. 2013. R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. http://www.R-project.org
  • Robinson, M., and R. Romoli. 2019. flagme: analysis of metabolomics GC/ MS data (version 1.38.1). https://bioconductor.org/packages/release/bioc/ html/flagme.html
  • Rosa, P., A. S. Lelej, S. A. Belokobylskij, V. M. Loktionov, and L. A. Zaytseva. 2017. Family Chrysididae, pp. 126-144. In A. S. Lelej, M. Yu. Proshchalykin, and V. M. Loktionov (eds.), Annotated catalogue of the Hymenoptera of Russia. Volume 1. Symphyta and Apocrita: Aculeata. Proceedings of the Zoological Institute RAS, Supplement 6.
  • Schlick-Steiner, B. C., F. M. Steiner, K. Moder, B. Seifert, M. Sanetra, E. Dyreson, C. Stauffer, and C. Erhard. 2006. A multidisciplinary approach reveals cryptic diversity in Western Palearctic Tetramorium ants (Hymenoptera: Formicidae). Mol. Phylogenet. Evol. 40: 259-273.
  • Simon, C., T. R. Buckley, F. Frati, J. B. Stewart, and A. T. Beckenbach. 2006. Incorporating molecular evolution into phylogenetic analysis, and a new compilation of conserved polymerase chain reaction primers for animal mitochondrial DNA. Annu. Rev. Ecol. Syst. 37: 545-579.
  • Smadja, C., and R. K. Butlin. 2008. On the scent of speciation: the chemosensory system and its role in premating isolation. Heredity 102: 77-97.
  • van der Smissen, J. 2010. Schlussel zur Determination der Goldwespen der engeren ignita -Gruppe (Hymenoptera Aculeata: Chrysididae). Verh. Ver. Naturw. Heimatforsch. Hamburg. 43: 4-184.
  • Smith, M. A., and B. L. Fisher. 2009. Invasions, DNA barcodes, and rapid biodiversity assessment using ants of Mauritius. Front. Zool. 6: 31.
  • Soon, V., E. Budrys, S. Orlovskyt e, J. Paukkunen, F. Odegaard, T. Ljubomirov, and U. Saarma. 2014. Testing the validity of Northern European species in the Chrysis ignita species group (Hymenoptera: Chrysididae) with DNA Barcoding. Zootaxa 3786: 301-330.
  • Srivathsan, A., E. Hartop, J. Puniamoorthy, W. T. Lee, S. N. Kutty, O. Kurina, and R. Meier. 2019. Rapid, large-scale species discovery in hyperdiverse taxa using 1D MinION sequencing. BMC Biol. 17: 96.
  • Stein, S. E. 1999. An integrated method for spectrum extraction and compound identification from gas chromatography/mass spectrometry data. J. Am. Soc. Mass. Spectrom. 10: 770-781.
  • Strohm, E., J. Kroiss, G. Herzner, C. Laurien-Kehnen, W. Boland, P. Schreier, and T. Schmitt. 2008. A cuckoo in wolves' clothing? Chemical mimicry in a specialized cuckoo wasp of the European beewolf (Hymenoptera, Chrysididae and Crabronidae). Front. Zool. 5: 2.
  • Vanickova, L., M. Virgilio, A. Tomcala, R. Brizova, S. Ekesi, M. Hoskovec, B. Kalinova, R. R. Do Nascimento, and M. De Meyeret. 2014. Resolution of three cryptic agricultural pests (Ceratitis fasciventris, C. anonae, C. rosa, Diptera: Tephritidae) using cuticular hydrocarbon profiling. Bull. Entomol. Res. 104: 631-638.
  • Wicker-Thomas, C., and T. Chertemps. 2010. Molecular biology and genetics of hydrocarbon production, pp. 53-74. In: G. J. Blomquist and A. G. Bagneres (eds.), Insect hydrocarbons: biology, biochemistry, and chemical ecology. Cambridge University Press, Cambridge, United Kingdom.
  • Wickham, H. 2007. Reshaping data with the reshape package. J. Stat. Softw. 21: 1-20.
  • Wisniowski, B. 2015. Cuckoo wasps (Hymenoptera: Chrysididae) of Poland. Diversity, identification, distribution. Ojcow National Park, Ojcow, Poland.
  • Wurdack, M., S. Herbertz, D. Dowling, J. Kroiss, E. Strohm, H. Baur, O. Niehuis, and T. Schmitt. 2015. Striking cuticular hydrocarbon dimorphism in the mason wasp Odynerus spinipes and its possible evolutionary cause (Hymenoptera: Chrysididae, Vespidae). Proc. Royal Soc. B. 282: 20151777.