Published March 3, 2022 | Version v1
Journal article Open

An exceptionally preserved Sphenodon-like sphenodontian reveals deep time conservation of the tuatara skeleton and ontogeny

Description

Simões, Tiago R., Kinney-Broderick, Grace, Pierce, Stephanie E. (2022): An exceptionally preserved Sphenodon-like sphenodontian reveals deep time conservation of the tuatara skeleton and ontogeny. Communications Biology 5 (1): 1-19, DOI: 10.1038/s42003-022-03144-y, URL: http://dx.doi.org/10.1038/s42003-022-03144-y

Files

source.pdf

Files (5.5 MB)

Name Size Download all
md5:f2bdcb94bdf1d8c585209f15d01fc77c
5.5 MB Preview Download

Linked records

Additional details

Identifiers

LSID
urn:lsid:plazi.org:pub:FFBDFF94FFF1FFC585209F15D01FC77C
URL
http://publication.plazi.org/id/FFBDFF94FFF1FFC585209F15D01FC77C

References

  • 1. Jones, M. E. H. et al. Integration of molecules and new fossils supports a Triassic origin for Lepidosauria (lizards, snakes, and tuatara). BMC Evol. Biol. 13, 1-21 (2013).
  • 2. Simoes, T. R., Vernygora, O. V., Caldwell, M. W. & Pierce, S. E. Megaevolutionary dynamics and the timing of evolutionary innovation in reptiles. Nat. Commun. 11, 3322 (2020).
  • 3. Hsiou, A. S. et al. Anew clevosaurid from the Triassic (Carnian) of Brazil and the rise of sphenodontians in Gondwana. Sci. Rep. 9, 11821 (2019).
  • 4. Simoes, T. R. & Caldwell, M. W. in Encyclopedia of Geology 2nd edn (eds D. Alderton, D. & Elias, S. A.) 165-174 (Academic Press, 2021).
  • 5. Martinez, R. N. et al. Anew sphenodontian (Lepidosauria: Rhynchocephalia) from the Late Triassic of Argentina and the early origin of the herbivore opisthodontians. Proc. R. Soc. Lond. Ser. B Biol. Sci. 280, 20132057 (2013).
  • 6. Scheyer, T. M. et al. Colobops: a juvenile rhynchocephalian reptile (Lepidosauromorpha), not a diminutive archosauromorph with an unusually strong bite. R. Soc. Open Sci. 7, 192179 (2020).
  • 7. Whiteside, D. I. The head skeleton of the Rhaetian sphenodontid Diphydontosaurus avonis gen. et sp. nov. and the modernizing of a living fossil. Philos. Trans. R. Soc. Lond. Ser. B Biol. Sci. 312, 379-430 (1986).
  • 8. Gow, C. E. & Raath, M. A. Fossil vertebrate studies in Rhodesia: sphenodontid remains from the Upper Trias of Rhodesia. Palaeontol. Afr. 20, 121-122 (1977).
  • 9. Close, R. A. et al. Diversity dynamics of Phanerozoic terrestrial tetrapods at the local-community scale. Nat. Ecol. Evol. 3, 590-597 (2019).
  • 10. Uetz, P., Freed, P., Aguilar, R. & Ho s ek, J. The Reptile Database. http:// www.reptile-database.org (2021).
  • 11. Apesteguia, S. & Rougier, G. W. A Late Campanian Sphenodontid Maxilla from Northern Patagonia. Am. Mus. Novit. 3581, 1-11 (2007).
  • 12. Apesteguia, S. & Jones, M. E. H. A Late Cretaceous "tuatara" (Lepidosauria: Sphenodontinae) from South America. Cretac. Res. 34, 154-160 (2012).
  • 13. Apesteguia, S., Gomez, R. O. & Rougier, G. W. The youngest South American rhynchocephalian, a survivor of the K/Pg extinction. Proc. R. Soc. Lond. Ser. B Biol. Sci. 281, 20140811 (2014).
  • 14. Reynoso, V.-H. A Middle Jurassic Sphenodon-like sphenodontian (Diapsida: Lepidosauria) from Huizachal Canyon, Tamaulipas, Mexico. J. Vert. Paleontol. 16, 210-221 (1996).
  • 15. Reynoso, V.-H. Possible evidence of a venom apparatus in a Middle Jurassic sphenodontian from the Huizachal red beds of Tamaulipas, Mexico. J. Vert. Paleontol. 25, 646-654 (2005).
  • 16. Saila, L. K. Anew species of the sphenodontian reptile Clevosaurus from the Lower Jurassic of South Wales. Palaeontology 48, 817-831 (2005).
  • 17. Herrera-Flores, J. A., Stubbs, T. L., Elsler, A. & Benton, M. J. Taxonomic reassessment of Clevosaurus latidens Fraser, 1993 (Lepidosauria, Rhynchocephalia) and rhynchocephalian phylogeny based on parsimony and Bayesian inference. J. Paleontol. 92, 734-742 (2018).
  • 18. Fraser, N. C. New Triassic sphenodontids from south-west England and a review of their classification. Palaeontology 29, 165-186 (1986).
  • 19. Simoes, T. R., Caldwell, M. W. & Pierce, S. E. Sphenodontian phylogeny and the impact of model choice in Bayesian morphological clock estimates of divergence times and evolutionary rates. BMC Biol. 18, 191 (2020).
  • 20. Jones, M. E. H. Skull shape and feeding strategy in Sphenodon and other Rhynchocephalia (Diapsida: Lepidosauria). J. Morphol. 269, 945-966 (2008).
  • 21. Villa, A., Montie, R., Roper, M., Rothgaenger, M. & Rauhut, O. W. M. Sphenofontis velserae gen. et sp. nov., a new rhynchocephalian from the Late Jurassic of Brunn (Solnhofen Archipelago, southern Germany). PeerJ 9, e11363 (2021).
  • 22. Apesteguia, S. A Late Campanian sphenodontid (Reptilia, Diapsida) from northern Patagonia. Comptes Rendus Palevol 4, 663-669 (2005).
  • 23. Jones, M. E. H., Tennyson, A. J. D., Worthy, J. P., Evans, S. E. & Worthy, T. H. Asphenodontine (Rhynchocephalia) from the Miocene of New Zealand and palaeobiogeography of the tuatara (Sphenodon). Proc. R. Soc. Lond. Ser. B Biol. Sci. 276, 1385-1390 (2009).
  • 24. Gemmell, N. J. et al. The tuatara genome reveals ancient features of amniote evolution. Nature 584, 403-409 (2020).
  • 25. Irisarri, I. et al. Phylotranscriptomic consolidation of the jawed vertebrate timetree. Nat. Ecol. Evol. 1, 1370-1378 (2017).
  • 26. Padian, K. Presence of the dinosaur Scelidosaurus indicates Jurassic age for the Kayenta Formation (Glen Canyon Group, northern Arizona). Geology 17, 438-441 (1989).
  • 27. Fraser, N. C. The osteology and relationships of Clevosaurus (Reptilia: Sphenodontida). Philos. Trans. R. Soc. Lond. Ser. B Biol. Sci. 321, 125-178 (1988).
  • 28. Chambi-Trowell, S. A. V., Whiteside, D. I. & Benton, M. J. Diversity in rhynchocephalian Clevosaurus skulls based on CT reconstruction of two Late Triassic species from Great Britain. Acta Palaeontol. Pol. https://doi.org/ 10.4202/app.00569.02018 (2019).
  • 29. Evans, S. E. The skull of a new eosuchian reptile from the Lower Jurassic of South Wales. Zool. J. Linn. Soc. 70, 203-264 (1980).
  • 30. Sobral, G., Simoes, T. R. & Schoch, R. R. Atiny new Middle Triassic stemlepidosauromorph from Germany: implications for the early evolution of lepidosauromorphs and the Vellberg fauna. Sci. Rep. 10, 2273 (2020).
  • 31. Simoes, T. R. et al. Reacquisition of the lower temporal bar in sexually dimorphic fossil lizards provides a rare case of convergent evolution. Sci. Rep. 6, 24087 (2016).
  • 32. Reynoso, V.-H. Huehuecuetzpalli mixtecus gen. et sp. nov: a basal squamate (Reptilia) from the Early Cretaceous of Tepexi de Rodriguez, Central Mexico. Philos. Trans. R. Soc. Lond. Ser. B Biol. Sci. 353, 477-500 (1998).
  • 33. Simoes, T. R. et al. The origin of squamates revealed by a Middle Triassic lizard from the Italian Alps. Nature 557, 706-709 (2018).
  • 34. Cocude-Michel, M. Les Rhynchocephales et les Sauriens des calcaires lithographiques (Jurassique Superieur) d' Europe occidentale. Nouv. Arch. Mus. Hist. Nat. Lyon 7, 1-187 (1963).
  • 35. Barahona, F. & Barbadillo, L. J. Inter- and intraspecific variation in the postnatal skull of some lacertid lizards. J. Zool. 245, 393-405 (1998).
  • 36. Bell, C. J., Evans, S. E. & Maisano, J. A. The skull of the gymnophthalmid lizard Neusticurus ecpleopus (Reptilia: Squamata). Zool. J. Linn. Soc. 139, 283-304 (2003).
  • 37. Evans, S. E. in Biology of the Reptilia (eds Gans, C., Gaunt, A. & Adler, K.) Ch. 1 (Academic Press, 2008).
  • 38. Oelrich, T. M. The anatomy of the head of Ctenosaura pectinata (Iguanidae). Misc. Publ. Mus. Zool. Univ. Mich. 94, 1-122 (1956).
  • 39. Fraser, N. C. Anew rhynchocephalian from the British Upper Trias. Palaeontology 25, 709-725 (1982).
  • 40. Harrison, H. S. The development and succession of teeth in Hatteria punctata. QJ. Microsc. Sci. 44, 161-213 (1901).
  • 41. Edmund, A. G. Tooth replacement phenomena in the lower vertebrates. Contr. R. Ont. Mus. Life Sci. Div. 52, 1-190 (1960).
  • 42. Howes, G. B. & Swinnerton, H. H. On the development of the skeleton of the tuatara, S phenodon punctatus; with remarks on the egg, on the hatching, and on the hatched young. Trans. Zool. Soc. Lond. 16, 1-84 (1901).
  • 43. Rieppel, O. The skull in a hatchling of Sphenodon punctatus. J. Herpetol. 26, 80-84 (1992).
  • 44. Reynoso, V.-H. Growth patterns and ontogenetic variation of the teeth and jaws of the Middle Jurassic sphenodontian Cynosphenodon huizachalensis (Reptilia: Rhynchocephalia). Can. J. Earth Sci. 40, 609-619 (2003).
  • 45. LeBlanc, A. R. H., Apesteguia, S., Larsson, H. C. E. & Caldwell, M. W. Unique tooth morphology and prismatic enamel in Late Cretaceous sphenodontians from Argentina. Curr. Biol. 30, 1755-1761.e1752 (2020).
  • 46. Robinson, P. L. in Morphology and Biology of Reptiles (eds d' A Bellairs, A. & Cox, C. B.) 43-64 (Academic Press, 1976).
  • 47. Gorniak, G. C., Rosenberg, H. I. & Gans, C. Mastication in the tuatara, Sphenodon punctatus (Reptilia: Rhynchocephalia): structure and activity of the motor system. J. Morphol. 171, 321-353 (1982).
  • 48. Simpson, G. G. American terrestrial Rhynchocephalia. Am. J. Sci. 12, 12-16 (1926).
  • 49. Martinez, R. N., Fernandez, E. & Alcober, O. A. Anew non-mammaliaform eucynodont from the Carnian-Norian Ischigualasto Formation, northwestern Argentina. Rev. Bras. Paleontol. 16, 61-76 (2013).
  • 50. Herrera- Flores, J. A., Stubbs, T. L. & Benton, M. J. Macroevolutionary patterns in Rhynchocephalia: is the tuatara (Sphenodon punctatus) a living fossil? Palaeontology 60, 319-328 (2017).
  • 51. Apesteguia, S. & Carballido, J. L. Anew eilenodontine (Lepidosauria, Sphenodontidae) from the Lower Cretaceous of central Patagonia. J. Vert. Paleontol. 34, 303-317 (2014).
  • 52. Chambi- Trowell, S. A., Whiteside, D. I., Benton, M. J. & Rayfield, E. J. Biomechanical properties of the jaws of two species of Clevosaurus and a reanalysis of rhynchocephalian dentary morphospace. Palaeontology 63, 919-939 (2020).
  • 53. Haas, G. in Biology of the Reptilia (eds Gans, C. & Parsons, T. S.) 285-490 (Academic Press, 1973).
  • 54. Jones, M. E. H. & Lappin, A. K. Bite- force performance of the last rhynchocephalian (Lepidosauria: Sphenodon). J. R. Soc. 39, 71-83 (2009).
  • 55. Rieppel, O. & Gronowski, R. W. The loss of the lower temporal arcade in diapsid reptiles. Zool. J. Linn. Soc. 72, 203-217 (1981).
  • 56. Schaerlaeken, V., Herrel, A., Aerts, P. & Ross, C. F. The functional significance of the lower temporal bar in Sphenodon punctatus. J. Exp. Biol. 211, 3908-3914 (2008).
  • 57. Herrel, A., Van Wassenbergh, S. & Aerts, P. in Encyclopedia of Life Sciences 1-9 (John Wiley & Sons, 2012).
  • 58. Moazen, M., Curtis, N., O' Higgins, P., Evans, S. E. & Fagan, M. J. Biomechanical assessment of evolutionary changes in the lepidosaurian skull. Proc. Natl Acad. Sci. USA 106, 8273-8277 (2009).
  • 59. Evans, S. E. & Jones, M. E. H. in New Aspects of Mesozoic Biodiversity 132 Lecture Notes in Earth Sciences (ed. Bandyopadhyay, S.) Ch. 2 (Springer Berlin Heidelberg, 2010).
  • 60. Mo, J.-Y., Xu, X. & Evans, S. E. The evolution of the lepidosaurian lower temporal bar: new perspectives from the Late Cretaceous of South China. Proc. R. Soc. Lond. Ser. B Biol. Sci. 277, 331-336 (2010).
  • 61. Muller, J. Early loss and multiple return of the lower temporal arcade in diapsid reptiles. Naturwissenschaften 90, 473-476 (2003).
  • 62. Apesteguia, S. & Novas, F. E. Large Cretaceous sphenodontian from Patagonia provides insight into lepidosaur evolution in Gondwana. Nature 425, 609-612 (2003).
  • 63. Apesteguia, S., Gomez, R. O. & Rougier, G. W. Abasal sphenodontian (Lepidosauria) from the Jurassic of Patagonia: new insights on the phylogeny and biogeography of Gondwanan rhynchocephalians. Zool. J. Linn. Soc. 166, 342-360 (2012).
  • 64. Simoes, T. R., Wilner, E., Caldwell, M. W., Weinschutz, L. C. & Kellner, A. W. A. Astem acrodontan lizard in the Cretaceous of Brazil revises early lizard evolution in Gondwana. Nat. Commun. 6, 9149 (2015).
  • 65. Simoes, T. R., Apesteguia, S., Hsiou, A. S. & Daza, J. D. Lepidosaurs from Gondwana: an Introduction. J. Herpetol. 51, 297-299 (2017).
  • 66. Bever, G. S. & Norell, M. A. Anew rhynchocephalian (Reptilia: Lepidosauria) from the Late Jurassic of Solnhofen (Germany) and the origin of the marine Pleurosauridae. R. Soc. Open Sci. 4, 170570 (2017).
  • 67. Rauhut, O. W., Heyng, A. M., Lopez-Arbarello, A. & Hecker, A. Anew rhynchocephalian from the Late Jurassic of Germany with a dentition that is unique amongst tetrapods. PLoS ONE 7, e46839 (2012).
  • 68. Simoes, T. R., Caldwell, M. W., Palci, A. & Nydam, R. L. Giant taxoncharacter matrices: quality of character constructions remains critical regardless of size. Cladistics 33, 198-219 (2017).
  • 69. Brazeau, M. D. Problematic character coding methods in morphology and their effects. Biol. J. Linn. Soc. 104, 489-498 (2011).
  • 70. Sereno, P. C. Logical basis for morphological characters in phylogenetics. Cladistics 23, 565-587 (2007).
  • 71. Simoes, T. R., Kinney-Broderick, G. & Pierce, S. E. Supplementary Data for "An exceptionally preserved Sphenodon-like sphenodontian reveals deep time conservation of the tuatara skeleton and ontogeny". Harvard Dataverse: https://doi.org/10.7910/DVN/KZQZ2X (2022).
  • 72. Goloboff, P. A., Farris, J. S. & Nixon, K. C. TNT, a free program for phylogenetic analysis. Cladistics 24, 774-786 (2008).
  • 73. Lewis, P. O. Alikelihood approach to estimating phylogeny from discrete morphological character data. Syst. Biol. 50, 913-925 (2001).
  • 74. Thorne, J. L. & Kishino, H. Divergence time and evolutionary rate estimation with multilocus data. Syst. Biol. 51, 689-702 (2002).
  • 75. Zhang, C., Stadler, T., Klopfstein, S., Heath, T. A. & Ronquist, F. Totalevidence dating under the fossilized birth-death process. Syst. Biol. 65, 228-249 (2016).
  • 76. Ronquist, F. et al. MrBayes 3.2: efficient Bayesian phylogenetic inference and model choice across a large model space. Syst. Biol. 61, 539-542 (2012).
  • 77. Miller, M. A., Pfeiffer, W. & Schwartz, T. in Gateway Computing Environments Workshop (GCE) 1-8 (IEEE, 2012).
  • 78. Rambaut, A., Suchard, M. A., Xie, D. & Drummond, A. J. Tracer v1.7. http:// beast.bio.ed.ac.uk/Tracer (2018).
  • 79. Gerber, S. Use and misuse of discrete character data for morphospace and disparity analyses. Palaeontology 62, 305-319 (2019).
  • 80. Sutherland, J. T. F., Moon, B. C., Stubbs, T. L. & Benton, M. J. Does exceptional preservation distort our view of disparity in the fossil record? Proc. R. Soc. Lond. Ser. B Biol. Sci. 286, 20190091 (2019).
  • 81. Lloyd, G. T. Estimating morphological diversity and tempo with discrete character-taxon matrices: implementation, challenges, progress, and future directions. Biol. J. Linn. Soc. 118, 131-151 (2016).
  • 82. Hughes, M., Gerber, S. & Wills, M. A. Clades reach highest morphological disparity early in their evolution. Proc. Natl Acad. Sci. USA 110, 13875-13879 (2013).
  • 83. Cisneros, J. C. & Ruta, M. Morphological diversity and biogeography of procolophonids (Amniota: Parareptilia). J. Syst. Palaeont 8, 607-625 (2010).
  • 84. Ciampaglio, C. N., Kemp, M. & McShea, D. W. Detecting changes in morphospace occupation patterns in the fossil record: characterization and analysis of measures of disparity. Paleobiology 27, 695-715 (2001).
  • 85. Lloyd, G. T. Journeys through discrete- character morphospace: synthesizing phylogeny, tempo, and disparity. Palaeontology 61, 637-645 (2018).