Published February 8, 2022 | Version v1
Journal article Restricted

Pseudochrobactrum algeriensis sp. nov., isolated from lymph nodes of Algerian cattle

Description

Loperena-Barber, Maite, Khames, Mammar, Leclercq, Sébastien O., Zygmunt, Michel S., Babot, Esteban D., Zúñiga-Ripa, Amaia, Gutiérrez, Ana, Oumouna, Mustapha, Moriyón, Ignacio, Cloeckaert, Axel, Conde-Álvarez, Raquel (2022): Pseudochrobactrum algeriensis sp. nov., isolated from lymph nodes of Algerian cattle. International Journal of Systematic and Evolutionary Microbiology (005223) 72 (2): 1-7, DOI: 10.1099/ijsem.0.005223, URL: http://dx.doi.org/10.1099/ijsem.0.005223

Files

Restricted

The record is publicly accessible, but files are restricted to users with access.

Linked records

Additional details

Identifiers

LSID
urn:lsid:plazi.org:pub:FFA4FFABA354663DD311832CFFCB214B
URL
http://publication.plazi.org/id/FFA4FFABA354663DD311832CFFCB214B

References

  • 1. Kampfer P, Rossello-Mora R, Scholz HC, Welinder-Olsson C, Falsen E, et al. Description of Pseudochrobactrum gen. nov., with the two species Pseudochrobactrum asaccharolyticum sp. nov. and Pseudochrobactrum saccharolyticum sp. nov. Int J Syst Evol Microbiol 2006;56:1823-1829.
  • 2. Kampfer P, Scholz H, Huber B, Thummes K, Busse H-J, et al. Description of Pseudochrobactrum kiredjianiae sp. nov. Int J Syst Evol Microbiol 2007;57:755-760.
  • 3. Kampfer P, Huber B, Lodders N, Warfolomeow I, Busse H-J, et al. Pseudochrobactrum lubricantis sp. nov., isolated from a metalworking fluid. Int J Syst Evol Microbiol 2009;59:2464-2467.
  • 4. Leclercq SO, Cloeckaert A, Zygmunt MS. Taxonomic organization of the family Brucellaceae based on a phylogenomic approach. Front Microbiol 2019;10:3083.
  • 5. Ashford RT, Muchowski J, Koylass M, Scholz HC, Whatmore AM. Application of whole genome sequencing and pan-family multilocus sequence analysis to characterize relationships within the family brucellaceae. Front Microbiol 2020;11:1329.
  • 6. Khames M, Mick V, de Miguel MJ, Girault G, Conde-Alvarez R, et al. The characterization of Brucella strains isolated from cattle in Algeria reveals the existence of a B. abortus lineage distinct from European and Sub-Saharan Africa strains. Vet Microbiol 2017;211:124-128.
  • 7. De Miguel MJ, Marin CM, Munoz PM, Dieste L, Grillo MJ, et al. Development of a selective culture medium for primary isolation of the main Brucella species. J Clin Microbiol 2011;49:1458-1463.
  • 8. Kamlage B. Methods for general and molecular bacteriology. Washington, D.C: American Society for Microbiology; 1996.
  • 9. Alton GG, Jones LM, Angus RD, Verger J-M. Techniques for the brucellosis laboratory. Monograph series. World Health Organization. Institut National de la Recherche Agronomique (INRA) 75007. Paris, France, 1988.
  • 10. Katoh K, Standley DM. MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol Biol Evol 2013;30:772-780.
  • 11. Bankevich A, Nurk S, Antipov D, Gurevich AA, Dvorkin M, et al. SPAdes:a new genome assembly algorithm and its applications to single-cell sequencing.J Comput Biol 2012;19:455-477.
  • 12. Okonechnikov K, Golosova O, Fursov M, UGENE team. Unipro UGENE: a unified bioinformatics toolkit. Bioinformatics 2012;28:1166-1167.
  • 13. Stamatakis A. RAxML-VI-HPC: maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models. Bioinformatics 2006;22:2688-2690.
  • 14. Letunic I, Bork P. Interactive Tree Of Life (iTOL) v4: recent updates and new developments. Nucleic Acids Res 2019;47:W256-W259.
  • 15. Seemann T. Prokka: rapid prokaryotic genome annotation. Bioinformatics 2014;30:2068-2069.
  • 16. Varghese NJ, Mukherjee S, Ivanova N, Konstantinidis KT, Mavrommatis K, et al. Microbial species delineation using whole genome sequences. Nucleic Acids Res 2015;43:6761-6771.
  • 17. Meier-Kolthoff JP, Auch AF, Klenk H-P, Goker M. Genome sequence-based species delimitation with confidence intervals and improved distance functions. BMC Bioinformatics 2013;14:60.
  • 18. Richter M, Rossello-Mora R, Oliver Glockner F, Peplies J. JSpeciesWS: a web server for prokaryotic species circumscription based on pairwise genome comparison. Bioinformatics 2016;32:929-931.
  • 19. Bligh EG, Dyer WJ. A rapid method of total lipid extraction and purification. Can J Biochem Physiol 1959;37:911-917.
  • 20. Aragon-Aranda B, Palacios-Chaves L, Salvador-Bescos M, deMiguelMJ,MunozPM,etal.ThephospholipidN-methyltransferase and phosphatidylcholine synthase pathways and the ChoXWV choline uptake system involved in phosphatidylcholine synthesis are widely conserved in most, but not all Brucella species. Front Microbiol 2021;12:614243.
  • 21. Conde-Alvarez R, Grillo MJ, Salcedo SP, de Miguel MJ, Fugier E, et al. Synthesis of phosphatidylcholine, a typical eukaryotic phospholipid, is necessary for full virulence of the intracellular bacterial parasite Brucella abortus. Cell Microbiol 2006;8:1322-1335.
  • 22. Martinez-Morales F, Schobert M, Lopez-Lara IM, Geiger O. Pathways for phosphatidylcholine biosynthesis in bacteria. Microbiology 2003;149:3461-3471.
  • 23. Lopez-Goni I, Garcia-Yoldi D, Marin CM, de Miguel MJ, Barquero-Calvo E, et al. New Bruce-ladder multiplex PCR assay for the biovar typing of Brucella suis and the discrimination of Brucella suis and Brucella canis. Vet Microbiol 2011;154:152-155.
  • 24. Ryan MP, Pembroke JT. The genus ochrobactrum as major opportunistic pathogens. Microorganisms 2020;8:E1797.
  • 25. Martirosyan A, Moreno E, Gorvel JP. An evolutionary strategy for a stealthy intracellular Brucella pathogen. Immunol Rev 2011;240:211-234.