Published December 24, 2021 | Version v1
Journal article Restricted

Early giant reveals faster evolution of large body size in ichthyosaurs than in cetaceans

Description

Sander, P. Martin, Griebeler, Eva Maria, Klein, Nicole, Juarbe, Jorge Velez, Wintrich, Tanja, Revell, Liam J., Schmitz, Lars (2021): Early giant reveals faster evolution of large body size in ichthyosaurs than in cetaceans. Science (New York, N.Y.) 374 (6575): 1-15, DOI: 10.1126/science.abf5787, URL: http://dx.doi.org/10.1126/science.abf5787

Files

Restricted

The record is publicly accessible, but files are restricted to users with access.

Linked records

Additional details

Identifiers

LSID
urn:lsid:plazi.org:pub:FF88FF9B3839FFA665654B42FFAEA418
URL
http://publication.plazi.org/id/FF88FF9B3839FFA665654B42FFAEA418

References

  • 1. G. J. Vermeij, Gigantism and its implications for the history of life. PLOS ONE 11, e0146092 (2016). doi: 10.1371/ journal.pone.0146092; pmid: 26771527
  • 2. N. P. Kelley, N. D. Pyenson, Vertebrate evolution. Evolutionary innovation and ecology in marine tetrapods from the Triassic to the Anthropocene. Science 348, aaa3716 (2015). doi: 10.1126/science.aaa3716; pmid: 25883362
  • 3. A. H. Knoll, M. J. Follows, A bottom-up perspective on ecosystem change in Mesozoic oceans. Proc. Biol. Sci. 283, 20161755 (2016). doi: 10.1098/rspb.2016.1755; pmid: 27798303
  • 4. J. A. Goldbogen et al., Why whales are big but not bigger: Physiological drivers and ecological limits in the age of ocean giants. Science 366, 1367-1372 (2019). doi: 10.1126/ science.aax9044; pmid: 31831666
  • 5. W. Gearty, C. R. McClain, J. L. Payne, Energetic tradeoffs control the size distribution of aquatic mammals. Proc. Natl. Acad. Sci. U.S.A. 115, 4194-4199 (2018). doi: 10.1073/ pnas.1712629115; pmid: 29581289
  • 6. G. J. Slater, J. A. Goldbogen, N. D. Pyenson, Independent evolution of baleen whale gigantism linked to Plio-Pleistocene ocean dynamics. Proc. Biol. Sci. 284, 20170546 (2017). doi: 10.1098/rspb.2017.0546; pmid: 28539520
  • 7. B. C. Moon, T. L. Stubbs, Early high rates and disparity in the evolution of ichthyosaurs. Commun. Biol. 3, 68 (2020). doi: 10.1038/s42003-020-0779-6; pmid: 32054967
  • 8. N. B. FrObisch, J. FrObisch, P. M. Sander, L. Schmitz, O. Rieppel, Macropredatory ichthyosaur from the Middle Triassic and the origin of modern trophic networks. Proc. Natl. Acad. Sci. U.S.A. 110, 1393-1397 (2013). doi: 10.1073/pnas.1216750110; pmid: 23297200
  • 9. P. M. Hull, Emergence of modern marine ecosystems. Curr. Biol. 27, R466-R469 (2017). doi: 10.1016/j.cub.2017.04.041; pmid: 28586680
  • 10. See supplementary materials
  • 11. C. v. Linnaeus, Systema Naturae. Regnum Animale (L. Salvius, Stockholm, ed. 10, 1758).
  • 12. H. F. Osborn, The reptilian subclasses Diapsida and Synapsida and the early history of the Diaptosauria. Mem. Am. Mus. Nat. Hist. 1, 449-507 (1903).
  • 13. H. M. D. de Blainville, Systeme de 'Herpetologie. Nouv. Ann. Mus. Hist. Nat. Paris 4, 233-296 (1835).
  • 14. J. Leidy, Notice of some reptilian remains from Nevada. Proc. Acad. Nat. Sci. Philadelphia 20, 177-178 (1868).
  • 15. P. M. Sander, The large ichthyosaur Cymbospondylus buchseri, sp. nov., from the Middle Triassic of Monte San Giorgio (Switzerland), with a survey of the genus in Europe. J. Vertebr. Paleontol. 9, 163-173 (1989). doi: 10.1080/ 02724634.1989.10011750
  • 16. N. FrObisch, P. M. Sander, O. Rieppel, A new species of Cymbospondylus (Diapsida, Ichthyosauria) from the Middle Triassic of Nevada and re-evaluation of the skull osteology of the genus. Zool. J. Linn. Soc. 147, 515-538 (2006). doi: 10.1111/j.1096-3642.2006.00225.x
  • 17. N. Klein, L. Schmitz, T. Wintrich, P. M. Sander, A new cymbospondylid ichthyosaur (Ichthyosauria) from the Middle Triassic (Anisian) of the Augusta Mountains, Nevada, USA. J. Syst. Palaeontology 18, 1167-1191 (2020). doi: 10.1080/ 14772019.2020.1748132
  • 18. C. Monnet, H. Bucher, New middle and late Anisian (Middle Triassic) ammonoid faunas from Northwestern Nevada (USA): Taxonomy and biochronology. Foss. Strat. 52, 1-121 (2005).
  • 19. B. Moon, A new phylogeny of ichthyosaurs (Reptilia: Diapsida). J. Syst. Palaeontology 17, 129-155 (2019). doi: 10.1080/ 14772019.2017.1394922
  • 20. J. A. Massare, Tooth morphology and prey preference of Mesozoic marine reptiles. J. Vertebr. Paleontol. 7, 121-137 (1987). doi: 10.1080/02724634.1987.10011647
  • 21. R. Motani, Evolution of fish-shaped reptiles (Reptilia: Ichthyopterygia) in their physical environments and constraints. Annu. Rev. Earth Planet. Sci. 33, 12.11-12.26 (2005).
  • 22. C. McGowan, Giant ichthyosaurs of the Early Jurassic. Can. J. Earth Sci. 33, 1011-1021 (1996). doi: 10.1139/e96-077
  • 23. T. M. Scheyer, C. Romano, J. Jenks, H. Bucher, Early Triassic marine biotic recovery: The predators ' perspective. PLOS ONE 9, e88987 (2014). doi: 10.1371/journal.pone.0088987; pmid: 24647136
  • 24. S. Gutarra et al., Effects of body plan evolution on the hydrodynamic drag and energy requirements of swimming in ichthyosaurs. Proc. Biol. Sci. 286, 20182786 (2019). doi: 10.1098/rspb.2018.2786; pmid: 30836867
  • 25. R. Motani et al., A basal ichthyosauriform with a short snout from the Lower Triassic of China. Nature 517, 485-488 (2015). doi: 10.1038/nature13866; pmid: 25383536
  • 26. S. Nummela, T. Hussain, J. G. M. Thewissen, Cranial anatomy of Pakicetidae (Cetacea, Mammalia). J. Vertebr. Paleontol. 26, 746-759 (2006). doi: 10.1671/0272-4634(2006)26[746: CAOPCM]2.0.CO;2
  • 27. J. G. M. Thewissen, J. D. Sensor, M. T. Clementz, S. Bajpai, Evolution of dental wear and diet during the origin of whales. Paleobiology 37, 655-669 (2011). doi: 10.1666/10038.1
  • 28. M. A. MacIver, L. Schmitz, U. Mugan, T. D. Murphey, C. D. Mobley, Massive increase in visual range preceded the origin of terrestrial vertebrates. Proc. Natl. Acad. Sci. U.S.A. 114, E2375-E2384 (2017). doi: 10.1073/pnas.1615563114; pmid: 28270619
  • 29. J. M. Fahlke, K. A. Bastl, G. M. Semprebon, P. D. Gingerich, Paleoecology of archaeocete whales throughout the Eocene: Dietary adaptations revealed by microwear analysis. Palaeogeogr. Palaeoclimatol. Palaeoecol. 386, 690-701 (2013). doi: 10.1016/j.palaeo.2013.06.032
  • 30. L. N. Cooper et al., Aquatic habits of cetacean ancestors: Integrating bone microanatomy and stable isotopes. Integr. Comp. Biol. 56, 1370-1384 (2016). doi: 10.1093/ icb/icw119; pmid: 27697778
  • 31. L. J. Revell, Phytools: An R package for phylogenetic comparative biology (and other things). Methods Ecol. Evol. 3, 217-223 (2012). doi: 10.1111/j.2041-210X.2011.00169.x
  • 32. J. C. Uyeda, L. J. Harmon, A novel Bayesian method for inferring and interpreting the dynamics of adaptive landscapes from phylogenetic comparative data. Syst. Biol. 63, 902-918 (2014). doi: 10.1093/sysbio/syu057; pmid: 25077513
  • 33. C. M. Peredo, N. D. Pyenson, C. D. Marshall, M. D. Uhen, Tooth loss precedes the origin of baleen in whales. Curr. Biol. 28, 3992-4000.e2 (2018). doi: 10.1016/j.cub.2018.10.047; pmid: 30503622
  • 34. J. D. Walker, J. W. Geissman, S. A. Bowring, L. E. Babcock, "Geologic time scale v. 5.0" (Geological Society of America, 2018).
  • 35. K. M. Nichols, N. J. Silberling, Stratigraphy and depositional history of the Star Peak Group (Triassic), northwestern Nevada. Spec. Pap. Geol. Soc. Am. 178, 1-73 (1977).
  • 36. G. Cuny, O. Rieppel, P. M. Sander, The shark fauna from the Middle Triassic (Anisian) of North-Western Nevada. Zool. J. Linn. Soc. 133, 285-301 (2001). doi: 10.1111/ j.1096-3642.2001.tb00627.x
  • 37. O. Rieppel, Handbook of Paleoherpetology / Sauropterygia I.: Placodontia, Pachypleurosauria, Nothosauroidea, Pistosauroidea (Friedrich Pfeil, 2000).
  • 38. J. C. Merriam, Triassic Ichthyosauria, with Special Reference to the American Forms (Memoirs of the University of California, The University Press, 1908).
  • 39. L. Schmitz, P. M. Sander, G. W. Storrs, O. Rieppel, New Mixosauridae (Ichthyosauria) from the Middle Triassic of the Augusta Mountains (Nevada, USA) and their implications for mixosaur taxonomy. Palaentographica A 270, 133-162 (2004).
  • 40. J. C. Merriam, Preliminary note on a new marine reptile from the Middle Triassic of Nevada. Univ. Calif. Publication Bull. Dept. Geol. 5, 5-79 (1906).
  • 41. B. Gauzens et al., Fluxweb: An R package to easily estimate energy fluxes in food webs. Methods Ecol. Evol. 10, 270-279 (2018). doi: 10.1111/2041-210X.13109
  • 42. N. D. Martinez, Allometric trophic networks from individuals to socio-ecosystems: Consumer-resource theory of the ecological elephant in the room. Front. Ecol. Evol. 8, 92 (2020). doi: 10.3389/fevo.2020.00092
  • 43. R. Motani, D.-Y. Jiang, A. Tintori, C. Ji, J.-D. Huang, Pre- versus post-mass extinction divergence of Mesozoic marine reptiles dictated by time-scale dependence of evolutionary rates. Proc. Biol. Sci. 284, 20170241 (2017). doi: 10.1098/ rspb.2017.0241; pmid: 28515201
  • 44. J. H. Brown, J. F. Gillooly, A. P. Allen, V. M. Savage, G. B. West, Toward a metabolic theory of ecology. Ecology 85, 1771-1789 (2004). doi: 10.1890/03-9000
  • 45. E. L. Nicholls, M. Manabe, Giant ichthyosaurs of the Triassic - A new species of Shonisaurus from the Pardonet Formation (Norian, Late Triassic) of British Columbia. J. Vertebr. Paleontol. 24, 838-849 (2004). doi: 10.1671/0272-4634 (2004)024[0838:GIOTTN]2.0.CO;2
  • 46. C. R. McClain et al., Sizing ocean giants: Patterns of intraspecific size variation in marine megafauna. PeerJ 3, e715 (2015). doi: 10.7717/peerj.715; pmid: 25649000
  • 47. A. Brayard et al., Unexpected Early Triassic marine ecosystem and the rise of the Modern evolutionary fauna. Sci. Adv. 3, e1602159 (2017). doi: 10.1126/sciadv.1602159; pmid: 28246643
  • 48. H. Song, P. B. Wignall, A. M. Dunhill, Decoupled taxonomic and ecological recoveries from the Permo-Triassic extinction. Sci. Adv. 4, eaat5091 (2018). doi: 10.1126/sciadv.aat5091; pmid: 30324133
  • 49. P. M. Sander et al., Biology of the sauropod dinosaurs: The evolution of gigantism. Biol. Rev. Camb. Philos. Soc. 86, 117-155 (2011). doi: 10.1111/j.1469-185X.2010.00137.x; pmid: 21251189
  • 50. M. J. Benton et al., Exceptional vertebrate biotas from the Triassic of China, and the expansion of marine ecosystems after the Permo-Triassic mass extinction. Earth Sci. Rev. 137, 85-128 (2014). doi: 10.1016/j.earscirev.2014.08.004
  • 51. M. J. Orchard, Conodont diversity and evolution through the latest Permian and Early Triassic upheavals. Palaeogeogr. Palaeoclimatol. Palaeoecol. 252, 93-117 (2007). doi: 10.1016/ j.palaeo.2006.11.037
  • 52. R. Motani, B. M. Rothschild, W. J. Wahl Jr., Large eyeballs in diving ichthyosaurs. Nature 402, 747 (1999). doi: 10.1038/ 45435
  • 53. D.-E. Nilsson, E. Warrant, S. Johnsen, Computational visual ecology in the pelagic realm. Philos. Trans. R. Soc. London Ser. B 369, 20130038 (2014). doi: 10.1098/rstb.2013.0038; pmid: 24395965
  • 54. J. M. Grady et al., Metabolic asymmetry and the global diversity of marine predators. Science 363, eaat4220 (2019). doi: 10.1126/science.aat4220; pmid: 30679341
  • 55. C. Pimiento, J. L. Cantalapiedra, K. Shimada, D. J. Field, J. B. Smaers, Evolutionary pathways toward gigantism in sharks and rays. Evolution 73, 588-599 (2019). doi: 10.1111/ evo.13680; pmid: 30675721
  • 56. A. T. Boersma, N. D. Pyenson, Albicetus oxymycterus, a new generic name and redescription of a basal physeteroid (Mammalia, Cetacea) from the Miocene of California, and the evolution of body size in sperm whales. PLOS ONE 10, e0135551 (2015). doi: 10.1371/journal.pone.0135551; pmid: 26651027
  • 57. R. W. Boessenecker,M. Churchill, E. A. Buchholtz, B. L. Beatty, J. H. Geisler, Convergent evolution of swimming adaptations in modern whales revealed by a large macrophagous dolphin from the Oligocene of South Carolina. Curr. Biol. 30, 3267-3273.e2 (2020). doi: 10.1016/j.cub.2020.06.012;
  • 58. J. H. Geisler, M. W. Colbert, J. L. Carew, A new fossil species supports an early origin for toothed whale echolocation. Nature 508, 383-386 (2014). doi: 10.1038/nature13086; pmid: 24670659
  • 59. J. A. Goldbogen, P. T. Madsen, The evolution of foraging capacity and gigantism in cetaceans. J. Exp. Biol. 221, jeb166033 (2018). doi: 10.1242/jeb.166033; pmid: 29895582
  • 60. E. E. Maxwell, D. Y. Cortes, P. Patarroyo, M. L. P. Ruge, A new specimen of Platypterygius sachicarum (Reptilia, Ichthyosauria) from the Early Cretaceous of Colombia and its phylogenetic implications. J. Vertebr. Paleontol. 39, e1577875 (2019). doi: 10.1080/02724634.2019.1577875
  • 61. W. P. Maddison, D. R. Maddison, Mesquite: A modular system for evolutionary analysis. Version 3.02 (2015); www.mesquiteproject.org.
  • 62. P. A. Goloboff, J. S. Farris, K. C. Nixon, TNT, a free program for phylogenetic analysis. Cladistics 24, 774-786 (2008). doi: 10.1111/j.1096-0031.2008.00217.x
  • 63. J.-D. Huang et al., The new ichthyosauriform Chaohusaurus brevifemoralis (Reptilia, Ichthyosauromorpha) from Majiashan, Chaohu, Anhui Province, China. PeerJ 7, e7561 (2019). doi: 10.7717/peerj.7561; pmid: 31565558
  • 64. D. Swofford, PAUP*. Phylogenetic Analysis Using Parsimony (* and Other Methods). Version 4.0b10 (Sinauer Associates, 2002).
  • 65. R Core Team, R software, version 3.5.2 (R Foundation for Statistical Computing, Vienna, Austria, 2020); www.R-project.org/.
  • 66. J. H. Geisler, A. E. Sanders, Morphological evidence for the phylogeny of Cetacea. J. Mamm. Evol. 10, 23-129 (2003). doi: 10.1023/A:1025552007291
  • 67. G. T. Lloyd, G.J. Slater, A total-group phylogenetic metatree for Cetacea and the importance of fossil data in diversification analyses. Syst. Biol. 70, 922-939 (2021). doi: 10.1093/sysbio/ syab002; pmid: 33507304
  • 68. S. Bajpai, P. D. Gingerich, A new Eocene archaeocete (Mammalia, Cetacea) from India and the time of origin of whales. Proc. Natl. Acad. Sci. U.S.A. 95, 15464-15468 (1998). doi: 10.1073/pnas.95.26.15464; pmid: 9860991
  • 69. A. E. Hernandez Cisneros, J. Velez-Juarbe, Paleobiogeography of the North Pacific toothed mysticetes (Cetacea: Aetiocetidae): A key on the Oligocene cetacean distributional patterns. Palaeontology 64, 51-61 (2021). doi: 10.1111/pala.12507
  • 70. M. Viglino, M. R. Buono, R. E. Fordyce, J. I. Cuitino, E. M. G. Fitzgerald, Anatomy and phylogeny of the large shark-toothed dolphin Phoberodon arctirostris Cabrera, 1926 (Cetacea: Odontoceti) from the early Miocene of Patagonia (Argentina). Zool. J. Linn. Soc. 185, 511-542 (2019). doi: 10.1093/zoolinnean/zly053
  • 71. C. M. Peredo, M. D. Uhen, M. D. Nelson, A new kentriodontid (Cetacea: Odontoceti) from the early Miocene Astoria Formation and a revision of the stem delphinidan family Kentriodontidae. J. Vertebr. Paleontol. 38, e1411357 (2018). doi: 10.1080/02724634.2017.1411357
  • 72. M. R. McGowen et al., Phylogenomic resolution of the cetacean tree of life using target sequence capture. Syst. Biol. 69, 479-501 (2020). doi: 10.1093/sysbio/syz068; pmid: 31633766
  • 73. N. D. Pyenson, S. N. Sponberg, Reconstructing body size in extinct crown Cetacea (Neoceti) using allometry, phylogenetic methods and tests from the fossil record. J. Mamm. Evol. 18, 269-288 (2011). doi: 10.1007/s10914-011-9170-1
  • 74. N. Cooper, G. H. Thomas, C. Venditti, A. Meade, R. P. Freckleton, A cautionary note on the use of Ornstein Uhlenbeck models in macroevolutionary studies.Biol. J. Linn. Soc. Lond. 118, 64-77 (2016). doi: 10.1111/bij.12701; pmid: 27478249
  • 75. D. L. Pisor, Registry of World Record Size Shells (ConchBooks, ed. 5, 2008).