Published June 18, 2021 | Version v1
Journal article Restricted

Exploring the diversity of the deep sea-four new species of the amphipod genus Oedicerina described using morphological and molecular methods

Description

Jażdżewska, Anna M., Brandt, Angelika, Arbizu, Pedro Martínez, Vink, Annemiek (2022): Exploring the diversity of the deep sea-four new species of the amphipod genus Oedicerina described using morphological and molecular methods. Zoological Journal of the Linnean Society 194: 181-225, DOI: 10.1093/zoolinnean/zlab032

Files

Restricted

The record is publicly accessible, but files are restricted to users with access.

Linked records

Additional details

Identifiers

LSID
urn:lsid:zoobank.org:pub:01794248-7D36-42DC-B1FD-2A61FBEEB577L
LSID
urn:lsid:plazi.org:pub:09701C4EFFE23A14133C8769FFF2E324
URL
http://publication.plazi.org/id/09701C4EFFE23A14133C8769FFF2E324

References

  • Astrin JJ, Stuben PE. 2008. Phylogeny in cryptic weevils: molecules, morphology and new genera of western Palaearctic Cryptorhynchinae (Coleoptera: Curculionidae). Invertebrate Systematics 22: 503-522.
  • Bandelt HJ, Forster P, Rohl A. 1999. Median-joining networks for inferring intraspecific phylogenies. Molecular Biology and Evolution 16: 37-48.
  • Bober J, Brandt A, Frutos I, Schwentner M. 2019. Diversity and distribution of Ischnomesidae (Crustacea: Isopoda: Asellota) along the Kuril-Kamchatka Trench-a genetic perspective. Progress in Oceanography 178: 102174.
  • Bober S, Brix S, Riehl T, Schwentner M, Brandt A. 2018a. Does the Mid-Atlantic Ridge affect the distribution of abyssal benthic crustaceans across the Atlantic Ocean? Deep-Sea Research Part II 148: 91-104.
  • Bober S, Riehl T, Henne S, Brandt A. 2018b. New Macrostylidae (Isopoda) from the northwest Pacific Basin described by means of integrative taxonomy with reference to geographical barriers in the abyss. Zoological Journal of the Linnean Society 182: 549-603.
  • Bonifacio P, Menot L. 2019. New genera and species from the Equatorial Pacific provide phylogenetic insights into deep-sea Polynoidae (Annelida). Zoological Journal of the Linnean Society 185: 555-635.
  • Brandt A, Alalykina I, Brix S, Brenke N, Blazewicz M, Golovan OA, Johannsen N, Hrinko AM, Jazdzewska AM, Jeskulke K , Kamenev GM , Lavrenteva AV, Malyutina MV, Riehl T, Lins L, 2019. Depth zonation of deep-sea macrofauna of the northwest Pacific. Progress in Oceanography 176: 102131.
  • Brandt A, Barthel D. 1995. An improved supra- and epibenthic sledge for catching Peracarida (Crustacea, Malacostraca). Ophelia 43: 15-23.
  • Brandt A, Brix S, Riehl T, Malyutina M. 2020. Biodiversity and biogeography of the abyssal and hadal Kuril-Kamchatka trench and adjacent NW Pacific deep-sea regions. Progress in Oceanography 181: 102232.
  • Brandt A, Elsner N, Brenke N, Golovan O, Malyutina MV, Riehl T, Schwabe E, Wurzberg L. 2013. Epifauna of the Sea of Japan collected via a new epibenthic sledge equipped with camera and environmental sensor systems. Deep-Sea Research Part II 86-87: 43-55.
  • Brandt A, Havermans C, Janussen D, Jorger KM, Meyer-Lobbecke A, Schnurr S, Schuller M, Schwabe E, Wurzberg L, Zinkann A-C. 2014. Composition of epibenthic sledge catches in the South Polar Front of the Atlantic. Deep-Sea Research Part II 108: 69-75.
  • Brandt A, Malyutina MV, eds. 2015. The German-Russian deep-sea expedition KuramBio (Kurile Kamchatka Biodiversity Studies) to the abyssal area of the Kuril-Kamchatka Trench on board of the RV Sonne in 2012 following the footsteps of the legendary expeditions with RV Vityaz. Deep-Sea Research Part II 111: 1-405.
  • Brenke N. 2005. An epibenthic sledge for operations on marine soft bottom and bedrock. Marine Technology Society Journal 39: 10-21.
  • Britz R, Hundsdorfer A, Fritz U. 2020. Funding, training, permits-the three big challenges of taxonomy. Megataxa 1: 49-52.
  • Brix S, Bober S, Tschesche C, Kihara TC, Driskell A, Jennings RM. 2018a. Molecular species delimitation and its implications for species descriptions using desmosomatid and nannoniscid isopods from the VEMA fracture zone as example taxa. Deep-Sea Research Part II 148: 180-207.
  • Brix S, Leese F, Riehl T, Kihara TC. 2015. A new genus and new species of Desmosomatidae Sars, 1897 (Isopoda) from the eastern South Atlantic abyss described by means of integrative taxonomy. Marine Biodiversity 45: 7-61.
  • Brix S, Lorz A-N, Jazdzewska A, Hughes L, Tandberg AH, Pabis K, Stransky B, Krapp-Schickel T, Sorbe J-C, Hendrycks E, Vader WJM, Frutos I, Horton T, Jazdzewski K, Peart R, Beermann J, Coleman CO, Buhl-Mortensen L, Corbari L , Havermans C, Tato R, Jimenez Campean A. 2018b. Amphipod family distributions around Iceland. Zookeys 731: 41-53.
  • Brix S, Osborn KJ, Kaiser S, Truskey SB, Schnurr SM, Brenke N, Malyutina M, Martinez Arbizu P. 2020. Adult life strategy affects distribution patterns in abyssal isopods-implications for conservation in Pacific nodule areas. Biogeosciences 17: 6163-6184.
  • Brix S, Riehl T, Leese F. 2011. First genetic data for species of the genus Haploniscus Richardson, 1908 (Isopoda: Asellota: Haploniscidae) from neighbouring deep-sea basins in the South Atlantic. Zootaxa 84: 79-84.
  • Christodoulou M, O'Hara T, Hugall AF, Khodami S, Rodrigues CF, Hilario A, Vink A, Martinez Arbizu P. 2020. Unexpected high abyssal ophiuroid diversity in polymetallic nodule fields of the northeast Pacific Ocean, and implications for conservation. Biogeosciences 17: 1845-1876.
  • Coleman CO. 2003. "Digital inking": how to make perfect line drawings on computers. Organism, Diversity and Evolution, Electronic Supplement 14: 1-14.
  • Coleman CO. 2009. Drawing setae the digital way. Zoosystematics and Evolution 85: 305-310.
  • Coleman CO, Thurston MH. 2014. A redescription of the type species of Oedicerina Stephensen, 1931 (Crustacea, Amphipoda, Oedicerotidae) and the description of two new species. Zoosystematics and Evolution 90: 225-247.
  • d'Udekem d'Acoz C. 2004. The genus Bathyporeia Lindstrom, 1855, in western Europe: (Crustacea:Amphipoda: Pontoporeiidae). Zoologische Verhandelingen Leiden 348: 3-162.
  • De Broyer C, Chapelle G, Duchesne PA, Munn R, Nyssen F, Scailteur Y, Van Roozendael F, Dauby P. 2003. Structural and ecofunctional biodiversity of the amphipod crustacean benthic taxocenoses in the Southern Ocean. In: Marine biota and global change, Belgian Scientific Research Programme on the Antarctic, Scientific results, Belgian Federal Public Planning Service Science Policy, Brussels, Belgium 58.
  • Delic T, Trontelj P, Rendos M, Fiser C. 2017. The importance of naming cryptic species and the conservation of endemic subterranean amphipods. Scientific Reports 7: 1-12.
  • Dong D, Gan Z, Li X. 2021. Descriptions of eleven new species of squat lobsters (Crustacea: Anomura) from seamounts around the Yap and Mariana Trenches with notes on DNA barcodes and phylogeny. Zoological Journal of the Linnean Society: zlab003. doi:10.1093/zoolinnean/zlab003.
  • Dreutter S, Steffen M, Martinez Arbizu P, Brandt A. 2020. Will the "top five" deepest trenches lose one of their members? Progress in Oceanography 181: 102258.
  • Duperre N. 2020. Old and new challenges in taxonomy: what are taxonomists up against? Megataxa 1: 59-62.
  • Etter RJ, Boyle EE, Glazier A, Jennings RM, Dutra E, Chase MR. 2011. Phylogeography of a pan-Atlantic abyssal protobranch bivalve: implications for evolution in the Deep Atlantic. Molecular Ecology 20: 829-843.
  • Felsenstein J. 1985. Phylogenies and the comparative method. American Naturalist 125: 1-15.
  • Frutos I, Brandt A, Sorbe JC. 2017. Deep-sea suprabenthic communities: the forgotten biodiversity. In: Rossi S, Bramanti L, Gori A, Orejas C, eds. Marine animal forests. Cham: Springer International Publishing, 475-503.
  • Glover AG, Dahlgren TG, Wiklund H, Mohrbeck I, Smith CR. 2016. An end-to-end DNA taxonomy methodology for benthic biodiversity survey in the Clarion-Clipperton Zone, central Pacific abyss. Journal of Marine Science and Engineering 4: 2.
  • Glover AG, Smith CR, Paterson GLJ, Wilson GDF, Hawkins L, Sheader M. 2002. Polychaete species diversity in the Central Pacific abyss: local and regional patterns, and relationships with productivity. Marine Ecology Progress Series 240: 157-170.
  • Golovan OA, Blazewicz M, Brandt A, Jazdzewska A, Jozwiak P , Lavrenteva AV , Malyutina MV , Petryashov VV, Riehl T, Sattarova VV. 2019. Diversity and distribution of peracarid crustaceans (Malacostraca) from the abyss adjacent to the Kuril-Kamchatka Trench. Marine Biodiversity 49: 1343-1360.
  • Hendrycks EA, Conlan KE. 2003. New and unusual abyssal gammaridean Amphipoda from the north-east Pacific. Journal of Natural History 37: 2303-2368.
  • Horton T, Lowry J, De Broyer C, Bellan-Santini D, Coleman CO, Corbari L, Costello MJ, Daneliya M, Dauvin J-C, Fiser C, Gasca R, Grabowski M, Guerra-Garcia JM, Hendrycks E, Hughes L, Jaume D, Jazdzewski K, Kim Y-H, King R, Krapp-Schickel T, LeCroy S, Lorz A-N, Mamos T, Senna AR, Serejo C, Sket B, Souza-Filho JF, Tandberg AH, Thomas J, Thurston M, Vader W, Vainola R, Vonk R, White K, Zeidler W. 2020. World Amphipoda Database. Accessed at: http://www.marinespecies.org/amphipoda on 2020-04-04
  • Hou Z, Fu J, Li S. 2007. A molecular phylogeny of the genus Gammarus (Crustacea: Amphipoda) based on mitochondrial and nuclear gene sequences. Molecular Phylogenetics and Evolution 45: 596-611.
  • Janssen A, Kaiser S, Meissner K, Brenke N, Menot L, Martinez Arbizu P. 2015. A reverse taxonomic approach to assess macrofaunal distribution patterns in abyssal Pacific polymetallic nodule fields. PLoS One 10: 1-26.
  • Janssen A, Stuckas H, Vink A, Martinez Arbizu P. 2019. Biogeography and population structure of predominant macrofaunal taxa (Annelida and Isopoda) in abyssal polymetallic nodule fields: implications for conservation and management. Marine Biodiversity 49: 2641-2658.
  • Jazdzewska A. 2015. Kuril-Kamchatka deep sea revisited- insights into the amphipod abyssal fauna. Deep-Sea Research Part II 111: 294-300.
  • Jazdzewska AM, Corbari L, Driskell A, Frutos I, Havermans C, Hendrycks E, Hughes L, Lorz A-N, Stransky B, Tandberg AHS, Vader W, Brix S. 2018. A genetic fingerprint of Amphipoda from Icelandic waters-the baseline for further biodiversity and biogeography studies. Zookeys 731: 55-73.
  • Jazdzewska AM, Mamos T. 2019. High species richness of northwest Pacific deep-sea amphipods revealed through DNA barcoding. Progress in Oceanography 178: 102184.
  • Johannsen N, Lins L, Riehl T, Brandt A. 2019. Changes in species composition of Haploniscidae (Crustacea: Isopoda) across potential barriers to dispersal in the northwest Pacific. Progress in Oceanography 180: 102233
  • Kaiser S, Barnes DK, Brandt A. 2007. Slope and deep-sea abundance across scales: Southern Ocean isopods show how complex the deep sea can be. Deep-Sea Research Part II 54: 1776-1789.
  • Kaiser S, Kihara TC, Brix S, Mohrbeck I, Janssen A, Jennings RM.2021. Species boundaries and phylogeographic patterns in new species of Nannoniscus (Janiroidea: Nannoniscidae) from the equatorial Pacific nodule province inferred from mtDNA and morphology. Zoological Journal of the Linnean Society: zlaa174. doi:10.1093/zoolinnean/zlaa174
  • Kamanli SA, Kihara TC, Ball AD, Morritt D, Clark PF. 2017. A 3D imaging and visualization workflow, using confocal microscopy and advanced image processing for brachyuran crab larvae. Journal of Microscopy 266: 307-323.
  • Katoh K, Misawa K, Kuma K, Miyata T. 2002. MAFFT: a novel method for rapid multiple sequence alignment based on fast Fourier transform. Nucleic Acids Research 30: 3059-3066.
  • Katoh K, Standley DM. 2013. MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Molecular Biology and Evolution 30: 772-780.
  • Khodami S, Mercado-Salas NF, Martinez Arbizu P. 2020. Genus level molecular phylogeny of Aegisthidae Gisbrecht, 1893 (Copepoda: Harpacticoida) reveals morphological adaptations to deep-sea and plagic habitats. BMC Evolutionary Biology 20: 36.
  • Kimura M. 1980. A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. Journal of Molecular Evolution 16: 111-120.
  • Kumar S, Stecher G, Tamura K. 2016. MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Molecular Biology and Evolution 33: 1870-1874.
  • Ledoyer M. 1986. Crustaces amphipodes gammariens. Familles des Haustoriidae a Vitjazianidae. Faune de Madagascar 59(2). Paris: ORSTOM Institut Francais de Recherche Scientifique pour le Developement en Cooperation, 599-1112.
  • Lorz A-N, Jazdzewska AM, Brandt A. 2018. A new predator connecting the abyssal with the hadal in the Kuril-Kamchatka Trench, NW Pacific. PeerJ 6: e4887.
  • Malyutina M, Brandt A, eds. 2013. SoJaBio (Sea of Japan biodiversity study). Deep-Sea Research Part II 86-87: 1-238.
  • Malyutina MV, Chernyshev AV, Brandt A, eds. 2018. Introduction to the SokhoBio (Sea of Okhotsk biodiversity studies) expedition 2015. Deep-Sea Research Part II 154: 1-382.
  • Michels J, Buntzow M. 2010. Assessment of Congo red as a fluorescence marker for the exoskeleton of small crustaceans and the cuticle of polychaetes. Journal of Microscopy 238: 95-101.
  • Mitsuzawa K, Holloway G. 1998. Characteristics of deep currents along trenches in the northwest Pacific. Journal of Geophysical Research: Oceans 103: 13085-13092.
  • Pleijel F, Jondelius U, Norlinder E, Nygren A, Oxelman B, Schander C, Sundberg P, Thollesson M. 2008. Phylogenies without roots? A plea for the use of vouchers in molecular phylogenetic studies. Molecular Phylogenetics and Evolution 48: 369-371.
  • Ratnasingham S, Hebert PD. 2007. BOLD: the Barcode of Life Data System (http://www.barcodinglife.org). Molecular Ecology Notes 7: 355-364.
  • Ratnasingham S, Hebert PD. 2013. A DNA-based registry for all animal species: the Barcode Index Number (BIN) System. PLoS One 8: e66213.
  • Renz J, Markhaseva EL, Laakmann S. 2019. The phylogeny of Ryocalanoidea (Copepoda, Calanoida) based on morphology and a multi-gene analysis with a description of new ryocalanoidean species. Zoological Journal of the Linnean Society 185: 925-957.
  • Riehl T, Brenke N, Brix S, Driskell A, Kaiser S, Brandt A. 2014. Field and laboratory methods for DNA studies on deepsea isopod crustaceans. Polish Polar Research 35: 203-224.
  • Riehl T, Lins L, Brandt A. 2018. The effects of depth, distance, and the Mid-Atlantic Ridge on genetic differentiation of abyssal and hadal isopods (Macrostylidae). Deep-Sea Research Part II 148: 74-90.
  • Saeedi H, Brandt A. 2020. Introduction: biogeographic atlas of the deep NW Pacific fauna. In: Saeedi H, Brandt A, eds. Biogeographic atlas of the deep NW Pacific fauna. Sofia: Pensoft, 9-22.
  • Saitou N, Nei M. 1987. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Molecular Biology and Evolution 4: 406-425.
  • Stephensen K. 1931. Crustacea Malacostraca VII (Amphipoda III). The Danish Ingolf-Expedition 3: 179-290.
  • Vause BJ, Morley SA, Fonseca VG, Jazdzewska A, Ashton GV, Barnes DKA, Giebner H, Clark MS, Peck LS. 2019. Spatial and temporal dynamics of Antarctic shallow soft-bottom benthic communities: ecological drivers under climate change. BMC Ecology 19: 27.
  • Weisshappel JBF, Svavarsson J. 1998. Benthic amphipods (Crustacea: Malacostraca) in Icelandic waters: diversity in relation to faunal patterns from shallow to intermediate deep Arctic and North Atlantic Oceans.Marine Biology 131: 133-143.
  • Wiklund H, Neal L, Glover AG, Drennan R, Rabone M, Dahlgren TG. 2019. Abyssal fauna of polymetallic nodule exploration areas, eastern Clarion-Clipperton Zone, central Pacific Ocean: Annelida: Capitellidae, Opheliidae, Scalibregmatidae, and Travisiidae. ZooKeys 883: 1-82.
  • Zardus JD, Etter RJ, Chase MR, Rex MA, Boyle EE. 2006. Bathymetric and geographic population structure in the pan-Atlantic deep-sea bivalve Deminucula atacellana (Schenck, 1939). Molecular Ecology 15: 639-651.