Published January 29, 2013 | Version v1
Journal article Restricted

Population dynamics of Pseudocalanus minutus elongatus in the Gulf of Gdansk (southern Baltic Sea) - experimental and numerical results

  • 1. Institute of Oceanology, Polish Academy of Sciences, Sopot, Poland;
  • 2. Institute of Oceanography, University of Gdansk, Gdynia, Poland

Description

Dzierzbicka-Glowacka, Lidia, Kalarus, Marcin, Janecki, Maciej, Musialik, Maja, Mudrak, Stella, Żmijewska, Maria Iwona (2013): Population dynamics of Pseudocalanus minutus elongatus in the Gulf of Gdansk (southern Baltic Sea) - experimental and numerical results. Journal of Natural History 47 (5-12): 715-738, DOI: 10.1080/00222933.2012.722698, URL: http://dx.doi.org/10.1080/00222933.2012.722698

Files

Restricted

The record is publicly accessible, but files are restricted to users with access.

Linked records

Additional details

Identifiers

LSID
urn:lsid:plazi.org:pub:FFD0CE07D47221515A04FF9FFF8EE331

References

  • Bollens SM, Frost BW. 1989. Predator-induced diel vertical migration in a planktonic copepod. J Plankton Res. 11:1047-1065.
  • Bossicart M. 1980. Population dynamics of copepods in the Southern Bight of the North Sea (1977-1979): use of a multicohort model to derive biological parameters. ICESCM 1980/1:24
  • Bucklin A, Frost BW, Bradford-Grieve J, Allen LD, Copley NJ. 2003. Molecular systematic and phylogenetic assessment of 34 calanoid copepod species of the Calanidae and Clausocalanidae. Mar Biol. 142:333-343.
  • Ciszewski P, Witek Z. 1977. Production of older stages of copepods Acartia bifilosa Giesb. and Pseudocalanus elongatus Boeck in Gdansk Bay. Pol Arch Hydrobiol. 24:449-459.
  • Dahmen K. 1995. Vertikalverteilung und produktionsbiologische Bedeutung des Mesozooplanktons im Bornholm Becken. Ber Inst f Meeresk. 273:197.
  • Dzierzbicka-Glowacka L. 1994. Numerical analysis of the influence of the grazing on the two-dimensional distribution function of the phytoplankton concentration in a stratified sea. Oceanologia 36:155-173.
  • Dzierzbicka-Glowacka L. 2004a. Growth and development of copepodite stages of Pseudocalanus spp. J Plankton Res. 26:49-60.
  • Dzierzbicka-Glowacka L. 2004b. The dependence of body weight in copepodite stages of Pseudocalanus spp. on variations of ambient temperature and food concentration. Oceanologia 46:45-63.
  • Dzierzbicka-Glowacka L. 2005a. A numerical investigation of phytoplankton and Pseudocalanus elongatus dynamics in the spring bloom time in the Gdansk Gulf. J Mar Sys. 53:19-36.
  • Dzierzbicka-Glowacka L. 2005b. Modelling the seasonal dynamics of marine plankton in southern Baltic Sea. Part 1. A Coupled Ecosystem Model. Oceanologia 47:591-619.
  • Dzierzbicka-Glowacka L. 2005c. Equivalence of rates of growth and egg production of Pseudocalanus. Ocean Hydrobiol Stud. 34:19-32.
  • Dzierzbicka-Glowacka L. 2006. Modelling the seasonal dynamics of marine plankton in the southern Baltic Sea, Part 2: Numerical simulations. Oceanologia 48:41-71.
  • Dzierzbicka-Glowacka L, Bielecka L, Mudrak S. 2006. Seasonal dynamics of Pseudocalanus minutus elongatus and Acartia spp. in the southern Baltic Sea (Gdansk Deep) - numerical simulations. Biogeosciences 3:635-650.
  • Dzierzbicka-Glowacka L, Jakacki J, Janecki M, Nowicki A. 2011. Variability in the distribution of phytoplankton as affected by changes to the main physical parameters in the Baltic Sea. Oceanologia 53(1-TI):449-470.
  • Dzierzbicka-Glowacka L, Lemieszek A, Zmijewska I.M. 2009a. Parameterization of a population model for Acartia spp. in the southern Baltic Sea. Part 1: Development time. Oceanologia 51:165-184.
  • Dzierzbicka-Glowacka L, Lemieszek A, Zmijewska IM. 2009b. Parameterization of a population model for Acartia spp. in the southern Baltic Sea. Part 2: Egg production. Oceanologia 51:185-201.
  • Dzierzbicka-Glowacka L, Zielinski A. 2004. Potential rate of reproduction for some geographically separate populations of Pseudocalanus spp. Oceanologia 46:65-83.
  • Dzierzbicka-Glowacka L, Zmijewska IM, Mudrak S, Jakacki J, Lemieszek A. 2010. Population modelling of Acartia spp. in a water column ecosystem model for the South-Eastern Baltic Sea. Biogeosciences 7:2247-2259.
  • Evans F. 1977. Seasonal density and production estimates of the commoner planktonic copepods of Northhumberland coastal waters. Est Coast Mar Sci. 5:233-241.
  • Fennel W. 2001. Modeling of copepods with links to circulation model. J Plankton Res. 23:1217-1232.
  • Frost BW. 1989. A taxonomy of the marine calanoid copepod genus Pseudocalanus. Can J Zool. 67:525-551.
  • Hernroth L. 1985. Recommendations on methods for marine biological studies in the Baltic Sea: mesozooplankton biomass assessment. Baltic Mar Biol. 10:1-32.
  • Katajisto T. 2006. Benthic resting eggs in the life cycles of calanoid copepods in the northern Baltic Sea. Walter and Andree de Nottbeck Foundation Scientific Rep. No. 29, Helsinki, Finland: 1- 46.
  • Kinne O. 1963. The effects of temperature and salinity on marine and brackish water animals. I. Temperature. Oceanogr. Mar Biol Annu Rev. 1:301-340.
  • Klein Breteler WCM, Gonzalez SR, Schogt N. 1995. Development of Pseudocalanus elongatus (Copepoda, Calanoida) cultured at different temperature and food conditions. Mar Ecol Prog Ser. 119:99-110.
  • McLaren I A, Leonard A. 1995. Assessing the equivalence of growth and egg production of copepods. ICES J Mar Sci. 52:397-408.
  • McLaren IA, Sevigny J-M, Cockett CJ. 1989. Temperature-dependent development among Pseudocalanus species. Can J Zool. 67:559-564.
  • Mollmann C, Kornilovs G, Fetter M, Koster FW. 2004. Feeding ecology of central Baltic Sea herring and sprat. J Fish Biol. 65:1563-1581.
  • Mollmann C, Kornilovs G, Fetter M, Koster FW. 2005. Climate, zooplankton, and pelagic fish growth in the central Baltic Sea. ICES J Mar Sc. 62:1270-1280.
  • Mollmann C, Kornilovs G, Sidrevics L. 2000. Long-term dynamics of main mesozooplankton species in the Central Baltic Sea. J Plankton Res. 22:2015-2038.
  • Mollmann C, Koster FW. 1999. Food consumption by clupeids in the central Baltic: evidence for top-down control? ICES J Mar Sci. 56 (Suppl.):100-113.
  • Mollmann C, Koster FW. 2002. Population dynamics of calanoid copepods and the implications of their predation by clupeid fish in the Central Baltic Sea. J Plankton Res. 24:959-978.
  • Mudrak S. 2004. Short- and long-term variability of zooplankton in coastal Baltic waters: using the Gulf of Gdansk as an example. [PhD Thesis]. [Gdynia (Poland)]. University of Gdansk, 328p. + Aneks, (in Polish).
  • Postel L. 2005. Habitat layer extension and the occurrence of dominant calanoid copepods in the Baltic Sea. Available from: http://www.helcom.fi/environment2/ifs/archive/ifs.
  • Renz J, Hirche HJ. 2006. Life cycle of Pseudocalanus acuspes Giesbrecht (Copepoda, Calanoida) in the Central Baltic Sea: I: Seasonal and spatial distribution. Mar Biol. 148:567-580.
  • Renz J, Mengedoht D, Hirche HJ. 2008. Reproduction, growth and secondary production of Pseudocalanus elongatus Boeck (Copepoda, Calanoida) in the southern North Sea. J Plankton Res. 30:511-528.
  • Schulz J, Mollmann C, Hirche HJ. 2007. Vertical zonation of the zooplankton community in the Central Baltic Sea in relation to hydrographic stratification as revealed by multivariate discriminant function and canonical analysis. J Mar Sys. 67:47-58.
  • Sekiguchi H, McLaren IA, Corkett CJ. 1980. Relationship between growth rate and egg production in the copepod Acartia clausi Hudsonic. Mar Biol. 58:133-138.
  • Sparholt H. 1994. Fish species interactions in the Baltic Sea. Dana 10:131-162.
  • Stegert C, Kreus M, Carlotti F, Moll A. 2007. Parametrisation of a zooplankton population model for Pseudocalanus elongatus using stage duration laboratory experiments. Ecol Model. 206:214-234.
  • Viitasalo M. 1992. Calanoid resting eggs in the Baltic Sea: implications for the population dynamics of Acartia bifi losa (Copepoda). Mar Biol. 114:397-405.
  • Vinogradow ME, Shushkina EA. 1987. Functioning of plankton communities in the euphotic zone of the ocean. Moscow: Nauka, (in Russian).
  • Witek Z. 1995. Biological production and its utilization within a marine ecosystem in the western Gdansk basin. Gdynia, Poland: Sea Fisheries Institute. p.145 (in Polish).