Published December 21, 2007 | Version v1
Journal article Restricted

A modern look at the Animal Tree of Life*

  • 1. Department of Organismic and Evolutionary Biology & Museum of Comparative Zoology, Harvard University, 26 Oxford Street, Cambridge, MA 02138, USA, ggiribet@oeb.harvard.edu
  • 2. Department of Ecology and Evolutionary Biology, Brown University, Providence, 80 Waterman Street, RI 02912, USA, casey_dunn@brown.edu
  • 3. Department of Palaeontology, The Natural History Museum, Cromwell Road, London, SW7 5BD, UK, g.edgecombe@nhm.ac.uk Scripps Institution of Oceanography, University of California San Diego, 9500 Gilman Drive #0202, La Jolla, CA 92093, USA, grouse@ucsd.edu

Description

Giribet, Gonzalo, Dunn, Casey W., Edgecombe, Gregory D., Rouse, Greg W., Z.-Q (2007): A modern look at the Animal Tree of Life*. Zootaxa 1668 (1): 61-79, DOI: 10.11646/zootaxa.1668.1.8, URL: https://www.biotaxa.org/Zootaxa/article/view/zootaxa.1668.1.8

Files

Restricted

The record is publicly accessible, but files are restricted to users with access.

Linked records

Additional details

Identifiers

LSID
urn:lsid:plazi.org:pub:FF8C5E182B7BA163FFA9FFD99F243851

Related works

Cites
Publication: 10.1007/s00435-007-0045-1 (DOI)
Has part
Figure: 10.5281/zenodo.5104534 (DOI)
Figure: 10.5281/zenodo.5104538 (DOI)
Figure: 10.5281/zenodo.5104540 (DOI)
Figure: 10.5281/zenodo.5104556 (DOI)

References

  • Abele, L.G., Kim, W., & Felgenhauer, B.E. (1989) Molecular evidence for inclusion of the phylum Pentastomida in the Crustacea. Molecular Biology and Evolution, 6, 685-691.
  • Afzelius, B. (1995) Gustaf Retzius and spermatology. International Journal of Developmental Biology, 39, 675-685.
  • Aguinaldo, A.M.A., Turbeville, J.M., Lindford, L.S., Rivera, M.C., Garey, J.R., Raff, R.A., & Lake, J.A. (1997) Evidence for a clade of nematodes, arthropods and other moulting animals. Nature, 387, 489-493.
  • Baguna, J., & Riutort, M. (2004) The dawn of bilaterian animals: the case of acoelomorph flatworms. Bioessays, 26, 1046-1057.
  • Balavoine, G., & Adoutte, A. (2003) The segmented Urbilateria: A testable scenario. Integrative and Comparative Biology, 43, 137-147.
  • Ball, E.E., & Miller, D.J. (2006) Phylogeny: The continuing classificatory conundrum of chaetognaths. Current Biology, 16, R593-596.
  • Baurain, D., Brinkmann, H., & Philippe, H. (2007) Lack of resolution in the animal phylogeny: closely spaced cladogeneses or undetected systematic errors? Molecular Biology and Evolution, 24, 6-9.
  • Blair, J.E., Ikeo, K., Gojobori, T., & Hedges, S.B. (2002) The evolutionary position of nematodes. BMC Evolutionary Biology, 2, 1-7.
  • Bleidorn, C., Eeckhaut, I., Podsiadlowski, L., Schult, N., McHugh, D., Halanych, K.M., Milinkovitch, M.C., & Tiedemann, R. (2007) Mitochondrial genome and nuclear sequence data support Myzostomida as part of the annelid radiation. Molecular Biology and Evolution, 24, 1690-1701.
  • Botting, J.P., & Butterfield, N.J. (2005) Reconstructing early sponge relationships by using the Burgess Shale fossil Eiffelia globosa, Walcott. Proceedings of the National Academy of Sciences of the USA, 102, 1554-1559.
  • Bourlat, S.J., Juliusdottir, T., Lowe, C.J., Freeman, R., Aronowicz, J., Kirschner, M., Lander, E.S., Thorndyke, M., Nakano, H., Kohn, A.B., Heyland, A., Moroz, L.L., Copley, R.R., & Telford, M.J. (2006) Deuterostome phylogeny reveals monophyletic chordates and the new phylum Xenoturbellida. Nature, 444, 85-88.
  • Bourlat, S.J., Nielsen, C., Lockyer, A.E., Littlewood, D.T., & Telford, M.J. (2003) Xenoturbella is a deuterostome that eats molluscs. Nature, 424, 925-928.
  • Boyer, B.C., Henry, J. Q., & Martindale, M.Q. (1996) Dual origins of mesoderm in a basal spiralian: cell lineage analyses in the polyclad turbellarian Hoploplana inquilina. Developmental Biology, 179, 329-338.
  • Boyer, B.C., Henry, J.Q., & Martindale, M.Q. (1998) The cell lineage of a polyclad turbellarian embryo reveals close similarity to coelomate spiralians. Developmental Biology, 204, 111-123.
  • Budd, G.E. (2003) Arthropods as ecdysozoans: the fossil evidence. In: (A. Legakis, S. Sfenthourakis, R. Polymeni and M. Thessalou-Legaki, Eds.) The new parorama of animal evolution. Proceedings of the 18th International Congress of Zoology, Pensoft, Sofia, pp. 479-487.
  • Caron, J.-B., Scheltema, A., Schander, C., & Rudkin, D. (2006) A soft-bodied mollusc with radula from the Middle Cambrian Burgess Shale. Nature, 442, 159-163.
  • Carranza, S., Baguna, J., & Riutort, M. (1997) Are the Platyhelminthes a monophyletic primitive group? An assessment using 18S rDNA sequences. Molecular Biology and Evolution, 14, 485-497.
  • Cavalier Smith, T. (1998) A revised six-kingdom system of life. Biological Reviews, 73, 203-266.
  • Clark, A.G. et al.-Drosophia 12 Genome Consortium (2007) Evolution of genes and genomes on the Drosophila phylogeny. Nature, 450, 203-218.
  • Conway Morris, S., & Caron, J. B. (2007) Halwaxiids and the early evolution of the lophotrochozoans. Science, 315, 1255-1258.
  • Darwin, C.R. (1859) On the origin of species by means of Natural Selection, or the preservation of favoured races in the struggle for life, John Murray, London, 502 pp.
  • Dellaporta, S.L., Xu, A., Sagasser, S., Jakob, W., Moreno, M.A., Buss, L.W., & Schierwater, B. (2006) Mitochondrial genome of Trichoplax adhaerens supports Placozoa as the basal lower metazoan phylum. Proceedings of the National Academy of Sciences of the USA, 103, 8751-8756.
  • Delsuc, F., Brinkmann, H., Chourrout, D., & Philippe, H. (2006) Tunicates and not cephalochordates are the closest living relatives of vertebrates. Nature, 439, 965-968.
  • Dong, X.-p., Donoghue, P.C., Cunningham, J.A., Liu, J.-b., & Cheng, H. (2005) The anatomy, affinity, and phylogenetic significance of Markuelia. Evolution & Development, 7, 468-482.
  • Donoghue, P.C., Bengtson, S., Dong, X.P., Gostling, N.J., Huldtgren, T., Cunningham, J.A., Yin, C., Yue, Z., Peng, F., & Stampanoni, M. (2006) Synchrotron X-ray tomographic microscopy of fossil embryos. Nature, 442, 680-683.
  • Dopazo, H., Santoyo, J., & Dopazo, J. (2004) Phylogenomics and the number of characters required for obtaining an accurate phylogeny of eukaryote model species. Bioinformatics, 20 Suppl 1, I116-I121.
  • Dunn, C.W. (2005) Complex colony-level organization of the deep-sea siphonophore Bargmannia elongata (Cnidaria, Hydrozoa) is directionally asymmetric and arises by the subdivision of pro-buds. Developmental Dynamics, 234, 835-845.
  • Eeckhaut, I., McHugh, D., Mardulyn, P., Tiedemann, R., Monteyne, D., Jangoux, M., & Milinkovitch, M.C. (2000) Myzostomida: a link between trochozoans and flatworms? Proceedings of the Royal Society of London Series B Biological Sciences, 267, 1383-1392.
  • Eernisse, D.J., Albert, J.S., & Anderson, F.E. (1992) Annelida and Arthropoda are not sister taxa: A phylogenetic analysis of spiralian metazoan morphology. Systematic Biology, 41, 305-330.
  • Ereskovsky, A. V., and Dondua, A. K. (2006) The problem of germ layers in sponges (Porifera) and some issues concerning early metazoan evolution. Zoologischer Anzeiger, 245, 65-76.
  • Field, K.G., Olsen, G.J., Lane, D.J., Giovannoni, S.J., Ghiselin, M.T., Raff, E.C., Pace, N.R., & Raff, R.A. (1988) Molecular phylogeny of the animal kingdom. Science, 239, 748-753.
  • Franzen, A. (1955) Comparative morphological investigations into the spermiogenesis among Mollusca. Zoologiska Bidrag fran Uppsala, 30, 399-456.
  • Funch, P., & Kristensen, R.M. (1995) Cycliophora is a new phylum with affinities to Entoprocta and Ectoprocta. Nature, 378, 711-714.
  • Garey, J.R., & Schmidt-Rhaesa, A. (1998) The essential role of "minor" phyla in molecular studies of animal evolution. American Zoologist, 38, 907-917.
  • Gee, H. (2006) Careful with that amphioxus. Nature, 439, 923-924.
  • Gehling, J.G., & Rigby, J.K. (1996) Long expected sponges from the Neoproterozoic Ediacara fauna of South Australia. Journal of Paleontology, 70, 185-195.
  • Ghirardelli, E. (1995) Chaetognaths: two unsolved problems: the coelom and their affinities. In: (G. Lanzavecchia, R. Valvassori and M. D. Candia Carnevali, Eds.) Body cavities: function and phylogeny, Selected Symposia and Monographs U.Z.I., Mucchi, Modena, pp. 167-185.
  • Giribet, G. (2002) Current advances in the phylogenetic reconstruction of metazoan evolution. A new paradigm for the Cambrian explosion? Molecular Phylogenetics and Evolution, 24, 345-357.
  • Giribet, G. (2003) Molecules, development and fossils in the study of metazoan evolution; Articulata versus Ecdysozoa revisited. Zoology, 106, 303-326.
  • Giribet, G. (in press) Assembling the Lophotrochozoan (=Spiralian) Tree of Life. Philosophical Transactions of the Royal Society B: Biological Sciences.
  • Giribet, G., Distel, D.L., Polz, M., Sterrer, W., & Wheeler, W.C. (2000) Triploblastic relationships with emphasis on the acoelomates and the position of Gnathostomulida, Cycliophora, Plathelminthes, and Chaetognatha: A combined approach of 18S rDNA sequences and morphology. Systematic Biology, 49, 539-562.
  • Giribet, G., Okusu, A., Lindgren, A.R., Huff, S.W., Schrodl, M., & Nishiguchi, M.K. (2006) Evidence for a clade composed of molluscs with serially repeated structures: Monoplacophorans are related to chitons. Proceedings of the National Academy of Sciences of the USA, 103, 7723-7728.
  • Giribet, G., Sorensen, M.V., Funch, P., Kristensen, R.M., & Sterrer, W. (2004) Investigations into the phylogenetic position of Micrognathozoa using four molecular loci. Cladistics, 20, 1-13.
  • Glenner, H., Hansen, A.J., Sorensen, M.V., Ronquist, F., Huelsenbeck, J.P., & Willerslev, E. (2004) Bayesian inference of the metazoan phylogeny; a combined molecular and morphological approach. Current Biology, 14, 1644-1649.
  • Haeckel, E. (1866) Generelle Morphologie der Organismen. Allgemeine Grundzuge der Organischen formen-wissenschaft, mechanisch begrundet durch die von Charles Darwin reformirte descendenztheorie, 2 vols., Georg Reimer, Berlin, 574 + 462 pp.
  • Haeckel, E. (1874) Die Gastraea-Theorie, die phylogenetische Classification des Tierreichs und die Homologie der Keimblatter. Zeitschrift fur Naturwissenschaften, Jena, 8, 1-55.
  • Halanych, K.M. (2004) The new view of animal phylogeny. Annual Review of Ecology, Evolution and Systematics, 35, 229-256.
  • Halanych, K.M., Bacheller, J.D., Aguinaldo, A.M.A., Liva, S.M., Hillis, D.M., & Lake, J.A. (1995) Evidence from 18S ribosomal DNA that the lophophorates are protostome animals. Science, 267, 1641-1643.
  • Harzsch, S., & Muller, C.H.G. (2007) A new look at the ventral nerve centre of Sagitta: implications for the phylogenetic position of Chaetognatha (arrow worms) and the evolution of the bilaterian nervous system. Frontiers in Zoology, 4, 14.
  • Hausen, H. (2005) Chaetae and chaetogenesis in polychaetes (Annelida). Hydrobiologia, 535/536, 37-52.
  • Hejnol, A., & Martindale, M.Q. (in press) Acoelomorphs and the case for the simple Urbilaterian evolved from a cnidarian planula-like ancestor. Philosophical Transactions of the Royal Society B: Biological Sciences.
  • Hejnol, A., Martindale, M.Q., & Henry, J.Q. (2007) High-resolution fate map of the snail Crepidula fornicata: the origins of ciliary bands, nervous system, and muscular elements. Developmental Biology, 305, 63-76.
  • Hejnol, A., & Schnabel, R. (2005) The eutardigrade Thulinia stephaniae has an indeterminate development and the potential to regulate early blastomere ablations. Development, 132, 1349-1361.
  • Hejnol, A., & Schnabel, R. (2007) What a couple of dimensions can do for you: Comparative developmental studies using 4D microscopy-examples from tardigrade development. Integrative and Comparative Biology, 46, 151-161.
  • Hejnol, A., Schnabel, R., & Scholtz, G. (2006) A 4D-microscopic analysis of the germ band in the isopod crustacean Porcellio scaber (Malacostraca, Peracarida)-developmental and phylogenetic implications. Development Genes & Evolution, 216, 755-767.
  • Helfenbein, K.G., Fourcade, H.M., Vanjani, R.G., & Boore, J.L. (2004) The mitochondrial genome of Paraspadella gotoi is highly reduced and reveals that chaetognaths are a sister group to protostomes. Proceedings of the National Academy of Sciences of the USA, 101, 10639-10643.
  • Henry, J.Q., & Martindale, M.Q. (1998) Conservation of the spiralian developmental program: cell lineage of the nemertean, Cerebratulus lacteus. Developmental Biology, 201, 253-269.
  • Henry, J.Q., Okusu, A., & Martindale, M.Q. (2004) The cell lineage of the polyplacophoran, Chaetopleura apiculata: variation in the spiralian program and implications for molluscan evolution. Developmental Biology, 272, 145-160.
  • Hessling, R., Muller, M.C.M., & Westheide, W. (1999) CLSM analysis of serotonin-immunoreactive neurons in the central nervous system of Nais variabilis, Slavina appendiculata and Stylaria lacustris (Oligochaeta: Naididae). Hydrobiologia, 406, 223-233.
  • Hessling, R., and Purschke, G. (2000) Immunohistochemical (cLSM) and ultrastructural analysis of the central nervous system and sense organs in Aeolosoma hemprichi (Annelida, Aeolosomatidae). Zoomorphology, 120, 65-78.
  • Holland, N.D., Clague, D.A., Gordon, D.P., Gebruk, A., Pawson, D.L., & Vecchione, M. (2005) 'Lophenteropneust' hypothesis refuted by collection and photos of new deep-sea hemichordates. Nature, 434, 374-376.
  • Jamieson, B.G.M., Ausio, J., & Justine, J.-L. (1995) Advances in spermatozoal phylogeny and taxonomy, Memoires du Museum national d'Histoire Naturelle, Paris, 564 pp.
  • Jenner, R.A., & Scholtz, G. (2005) Playing another round of metazoan phylogenetics: Historical epistemology, sensitivity analysis, and the position of Arthropoda within Metazoa on the basis of morphology. Crustacean Issues, 16, 355- 385.
  • Jondelius, U., Ruiz-Trillo, I., Baguna, J., & Riutort, M. (2002) The Nemertodermatida are basal bilaterians and not members of the Platyhelminthes. Zoologica Scripta, 31, 201-215.
  • Kapp, H. (2000) The unique embryology of Chaetognatha. Zoologischer Anzeiger, 239, 263-266.
  • King, N. (2004) The unicellular ancestry of animal development. Developmental Cell, 7, 313-325.
  • Klass, K.D., Zompro, O., Kristensen, N.P., & Adis, J. (2002) Mantophasmatodea: A new insect order with extant members in the afrotropics. Science, 296, 1456-1459.
  • Kristensen, R.M., & Funch, P. (2000) Micrognathozoa: A new class with complicated jaws like those of Rotifera and Gnathostomulida. Journal of Morphology, 246, 1-49.
  • Kusserow, A., Pang, K., Sturm, C., Hrouda, M., Lentfer, J., Schmidt, H. A., Technau, U., von Haeseler, A., Hobmayer, B., Martindale, M.Q., & Holstein, T.W. (2005) Unexpected complexity of the Wnt gene family in a sea anemone. Nature, 433, 156-160.
  • Lake, J.A. (1989) Origin of the multicellular animals. In: (B. Fernholm, K. Bremer and H. Jornvall, Eds.) The Hierarchy of life. Molecules and morphology in phylogenetic analysis, Excerpta Medica, Amsterdam-New York-Oxford, pp. 273-278.
  • Lake, J.A. (1990) Origin of the Metazoa. Proceedings of the National Academy of Sciences of the USA, 87, 763-766.
  • Lavrov, D. V., Brown, W. M., and Boore, J. L. (2004) Phylogenetic position of the Pentastomida and (pan)crustacean relationships. Proceedings: Biological Sciences, 271, 1471-2954.
  • Leasi, F., Rothe, B.H., Schmidt-Rhaesa, A., & Todaro, M.A. (2006) The musculature of three species of gastrotrichs surveyed with confocal laser scanning microscopy (CLSM). Acta Zoologica (Stockholm), 87, 171-180.
  • Lee, P.N., Callaerts, P., De Couet, H.G., and Martindale, M.Q. (2003) Cephalopod Hox genes and the origin of morphological novelties. Nature, 424, 1061-1065.
  • Li, C.W., Chen, J.Y., & Hua, T.E. (1998) Precambrian sponges with cellular structures. Science, 279, 879-882.
  • Linnaeus, C. (1758) Systema naturae per regna tria naturae, secundum classes, ordines, genera, species, cum characteribus, differentiis, synonymis, locis. Vol. I, Laurentii Salvii, Holmiae, 824 pp.
  • Longhorn, S.J., Foster, P.G., & Vogler, A.P. (2007) The nematode-arthropod clade revisited: phylogenomic analyses from ribosomal protein genes misled by shared evolutionary biases. Cladistics, 23, 130-144.
  • Luter, C. (2000) Ultrastructure of larval and adult setae of Brachiopoda. Zoologischer Anzeiger, 239, 75-90.
  • Mallatt, J., & Giribet, G. (2006) Further use of nearly complete 28S and 18S rRNA genes to classify Ecdysozoa: 37 more arthropods and a kinorhynch Molecular Phylogenetics and Evolution, 40, 772-794.
  • Marletaz, F., Martin, E., Perez, Y., Papillon, D., Caubit, X., Lowe, C. J., Freeman, B., Fasano, L., Dossat, C., Wincker, P., Weissenbach, J., & Le Parco, Y. (2006) Chaetognath phylogenomics: a protostome with deuterostome-like development. Current Biology, 16, R577-R578.
  • Martindale, M.Q. (2005) The evolution of metazoan axial properties. Nature Reviews Genetics, 6, 917-927.
  • Martindale, M.Q., Finnerty, J.R., & Henry, J.Q. (2002) The Radiata and the evolutionary origins of the bilaterian body plan. Molecular Phylogenetics and Evolution, 24, 358-365.
  • Martindale, M.Q., Pang, K., & Finnerty, J.R. (2004) Investigating the origins of triploblasty: 'mesodermal' gene expression in a diploblastic animal, the sea anemone Nematostella vectensis (phylum, Cnidaria; class, Anthozoa). Development, 131, 2463-2474.
  • Maslakova, S.A., Martindale, M.Q., & Norenburg, J.L. (2004a) Fundamental properties of the spiralian developmental program are displayed by the basal nemertean Carinoma tremaphoros (Palaeonemertea, Nemertea). Developmental Biology, 267, 342-360.
  • Maslakova, S. A., Martindale, M. Q., and Norenburg, J. L. (2004b) Vestigial prototroch in a basal nemertean, Carinoma tremaphoros (Nemertea; Palaeonemertea). Evolution & Development, 6, 219-226.
  • Matus, D.Q., Copley, R.R., Dunn, C.W., Hejnol, A., Eccleston, H., Halanych, K.M., Martindale, M.Q., & Telford, M.J. (2006a) Broad taxon and gene sampling indicate that chaetognaths are protostomes. Current Biology, 16, R575- R576.
  • Matus, D.Q., Pang, K., Daly, M., & Martindale, M.Q. (2007a) Expression of Pax gene family members in the anthozoan cnidarian, Nematostella vectensis. Evolution & Development, 9, 25-38.
  • Matus, D.Q., Thomsen, G.H., & Martindale, M.Q. (2006b) Dorso/ventral genes are asymmetrically expressed and involved in germ-layer demarcation during cnidarian gastrulation. Current Biology, 16, 499-505.
  • Matus, D.Q., Thomsen, G.H., & Martindale, M.Q. (2007b) FGF signaling in gastrulation and neural development in Nematostella vectensis, an anthozoan cnidarian. Development Genes & Evolution, 217, 137-148.
  • Maxmen, A., Browne, W. E., Martindale, M. Q., and Giribet, G. (2005) Neuroanatomy of sea spiders implies an appendicular origin of the protocerebral segment. Nature, 437, 1144-1148.
  • Medina, M., Collins, A.G., Silberman, J.D., & Sogin, M.L. (2001) Evaluating hypotheses of basal animal phylogeny using complete sequences of large and small subunit rRNA. Proceedings of the National Academy of Sciences of the USA, 98, 9707-9712.
  • Meglitsch, P. A., and Schram, F. R. (1991) Invertebrate Zoology, Oxford University Press, Oxford, pp.
  • Miller, D.J., & Ball, E.E. (2005) Animal evolution: the enigmatic phylum Placozoa revisited. Current Biology, 15, R26- 28.
  • Muller, M.C., & Westheide, W. (2002) Comparative analysis of the nervous system in presumptive progenetic dinophilid and dorvilleid polychaetes (Annelida) by immunohistochemistry and cLSM. Acta Zoologica (Stockholm), 83, 33- 48.
  • Muller, M.C.M., Jochmann, R., & Schmidt-Rhaesa, A. (2004) The musculature of horsehair worm larvae (Gordius aquaticus, Paragordius varius, Nematomorpha): F-actin staining and reconstruction by cLSM and TEM. Zoomorphology, 123, 45-54.
  • Muller, M.C.M., & Schmidt-Rhaesa, A. (2003) Reconstruction of the muscle system in Antygomonas sp. (Kinorhyncha, Cyclorhagida) by means of phalloidin labelling and cLSM. Journal of Morphology, 256, 103-110.
  • Muller, M.C.M., & Sterrer, W. (2004) Musculature and nervous system of Gnathostomula peregrina (Gnathostomulida) shown by phalloidin labeling, immunohistochemistry, and cLSM, and their phylogenetic significance. Zoomorphology, 123, 169-177.
  • Muller, M.C.M., & Westheide, W. (2000) Structure of the nervous system of Myzostoma cirriferum (Annelida) as revealed by immunohistochemistry and cLSM analyses. Journal of Morphology, 245, 87-98.
  • Muller, W.E.G. (2003) The origin of metazoan complexity: Porifera as integrated animals. Integrative and Comparative Biology, 43, 3-10.
  • Nichols, S.A., Dirks, W., Pearse, J.S., & King, N. (2006) Early evolution of animal cell signaling and adhesion genes. Proceedings of the National Academy of Sciences of the USA, 103, 12451-12456.
  • Nielsen, C. (2001) Animal Evolution, Interrelationships of the Living Phyla Second Edition, Oxford University Press, Oxford, 563 pp.
  • Nielsen, C., Haszprunar, G., Ruthensteiner, B., & Wanninger, A. (2007) Early development of the aplacophoran mollusc Chaetoderma. Acta Zoologica (Stockholm), 88, 231-247.
  • Nielsen, C., Scharff, N., and Eibye-Jacobsen, D. (1996) Cladistic analyses of the animal kingdom. Biological Journal of the Linnean Society, 57, 385-410.
  • Okusu, A. (2002) Embryogenesis and development of Epimenia babai (Mollusca Aplacophora). Biological Bulletin, 203, 87-103.
  • Panganiban, G., Irvine, S.M., Lowe, C., Roehl, H., Corley, L.S., Sherbon, B., Grenier, J.K., Fallon, J.F., Kimble, J., Walker, M., Wray, G.A., Swalla, B.J., Martindale, M.Q., & Carroll, S.B. (1997) The origin and evolution of animal appendages. Proceedings of the National Academy of Sciences of the USA, 94, 5162-5166.
  • Panganiban, G., Nagy, L., and Carroll, S. B. (1994) The role of the Distal-less gene in the development and evolution of insect limbs. Current Biology, 4, 671-675.
  • Panganiban, G., Sebring, A., Nagy, L., & Carroll, S.B. (1995) The development of crustacean limbs and the evolution of arthropods. Science, 270, 1363-1366.
  • Papillon, D., Perez, Y., Caubit, X., & Le Parco, Y. (2004) Identification of chaetognaths as protostomes is supported by the analysis of their mitochondrial genome. Molecular Biology and Evolution, 21, 2122-2129.
  • Park, J.-K., Rho, H.S., Kristensen, R.M., Kim, W., & Giribet, G. (2006) First molecular data on the phylum Loricifera - an investigation into the phylogeny of Ecdysozoa with emphasis on the positions of Loricifera and Priapulida. Zoological Science, 23, 943-954.
  • Passamaneck, Y., & Halanych, K.M. (2006) Lophotrochozoan phylogeny assessed with LSU and SSU data: Evidence of lophophorate polyphyly. Molecular Phylogenetics and Evolution, 40, 20-28.
  • Passamaneck, Y.J., Schander, C., and Halanych, K. M. (2004) Investigation of molluscan phylogeny using large-subunit and small-subunit nuclear rRNA sequences. Molecular Phylogenetics and Evolution, 32, 25-38.
  • Peterson, K.J., & Butterfield, N.J. (2005) Origin of the Eumetazoa: testing ecological predictions of molecular clocks against the Proterozoic fossil record. Proceedings of the National Academy of Sciences of the USA, 102, 9547-9552.
  • Peterson, K.J., & Eernisse, D.J. (2001) Animal phylogeny and the ancestry of bilaterians: inferences from morphology and 18S rDNA gene sequences. Evolution & Development, 3, 170-205.
  • Peterson, K.J., Lyons, J.B., Nowak, K.S., Takacs, C.M., Wargo, M.J., & McPeek, M.A. (2004) Estimating metazoan divergence times with a molecular clock. Proceedings of the National Academy of Sciences of the USA, 101, 6536- 6541.
  • Philip, G.K., Creevey, C.J., & McInerney, J.O. (2005) The Opisthokonta and the Ecdysozoa may not be clades: stronger support for the grouping of plant and animal than for animal and fungi and stronger support for the Coelomata than Ecdysozoa. Molecular Biology and Evolution, 22, 1175-1184.
  • Philippe, H., Brinkmann, H., Martinez, P., Riutort, M., & Baguna, J. (2007) Acoel flatworms are not Platyhelminthes: evidence from phylogenomics. PLoS ONE, 2, e717.
  • Philippe, H., Lartillot, N., & Brinkmann, H. (2005) Multigene analyses of bilaterian animals corroborate the monophyly of Ecdysozoa, Lophotrochozoa and Protostomia. Molecular Biology and Evolution, 22, 1246-1253.
  • Prendini, L. (2001) Species or supraspecific taxa as terminals in cladistic analysis? Groundplans versus exemplars revisited. Systematic Biology, 50, 290-300.
  • Rokas, A., Kruger, D., & Carroll, S.B. (2005) Animal evolution and the molecular signature of radiations compressed in time. Science, 310, 1933-1938.
  • Rouse, G.W. (1999) Trochophore concepts: ciliary bands and the evolution of larvae in spiralian Metazoa. Biological Journal of the Linnean Society, 66, 411-464.
  • Rouse, G.W., Goffredi, S.K., & Vrijenhoek, R.C. (2004) Osedax: bone-eating marine worms with dwarf males. Science, 305, 668-671.
  • Rouse, G.W., & Pleijel, F. (2007) Annelida. Zootaxa, 1668, 245-264.
  • Rousset, V., Pleijel, F., Rouse, G.W., Erseus, C., & Siddall, M.E. (2007) A molecular phylogeny of annelids. Cladistics, 23, 41-63.
  • Ruiz-Trillo, I., Paps, J., Loukota, M., Ribera, C., Jondelius, U., Baguna, J., & Riutort, M. (2002) A phylogenetic analysis of myosin heavy chain type II sequences corroborates that Acoela and Nemertodermatida are basal bilaterians. Proceedings of the National Academy of Sciences of the USA, 99, 11246-11251.
  • Ruiz-Trillo, I., Riutort, M., Littlewood, D. T.J., Herniou, E.A., & Baguna, J. (1999) Acoel flatworms: earliest extant bilaterian Metazoans, not members of Platyhelminthes. Science, 283, 1919-1923.
  • Schnabel, R., Hutter, H., Moerman, D., & Schnabel, H. (1997) Assessing normal embryogenesis in Caenorhabditis elegans using a 4D microscope: variability of development and regional specification. Developmental Biology, 184, 234-265.
  • Schram, F.R. (1991) Cladistic analysis of metazoan phyla and the placement of fossil problematica. In: (A. M. Simonetta and S. Conway Morris, Eds.) The early evolution of Metazoa and the significance of problematic taxa, Cambridge University Press, Cambridge, pp. 35-46.
  • Seaver, E.C., Paulson, D.A., Irvine, S.Q., & Martindale, M.Q. (2001) The spatial and temporal expression of Ch-en, the engrailed gene in the polychaete Chaetopterus, does not support a role in body axis segmentation. Developmental Biology, 236, 195-209.
  • Seaver, E.C., Thamm, K., & Hill, S.D. (2005) Growth patterns during segmentation in the two polychaete annelids, Capitella sp. I and Hydroides elegans: comparisons at distinct life history stages. Evolution & Development, 7, 312-26.
  • Shimotori, T., & Goto, T. (2001) Developmental fates of the first four blastomeres of the chaetognath Paraspadella gotoi: relationship to protostomes. Development, Growth & Differentiation, 43, 371-382.
  • Shu, D., Conway Morris, S., Zhang, Z.F., Liu, J.N., Han, J., Chen, L., Zhang, X.L., Yasui, K., & Li, Y. (2003) A new species of yunnanozoan with implications for deuterostome evolution. Science, 299, 1380-1384.
  • Shu, D.-G., Conway Morris, S., Han, J., Zhang, Z.-F., & Liu, J.-N. (2004) Ancestral echinoderms from the Chengjiang deposits of China. Nature, 430, 422-428.
  • Shu, D.-G., Conway Morris, S., Han, J., Chen, L., Zhang, X.L., Zhang, Z.F., Liu, H.Q., Li, Y., & Liu, J.N. (2001) Primitive deuterostomes from the Chengjiang Lagerstatte (Lower Cambrian, China). Nature, 414, 419-424.
  • Shu, D.-G., Conway Morris, S., Han, J., Li, Y., Zhang, X.-L., Hua, H., Zhang, Z.-F., Liu, J.-N., Guo, J.-F., Yao, Y., and Yasui, K. (2006) Lower Cambrian vendobionts from China and early diploblast evolution. Science, 312, 731-734.
  • Signorovitch, A. Y., Buss, L. W., and Dellaporta, S. L. (2007) Comparative genomics of large mitochondria in placozoans. PLoS Genetics, 3, e13.
  • Sorensen, M.V., Funch, P., Willerslev, E., Hansen, A.J., & Olesen, J. (2000) On the phylogeny of Metazoa in the light of Cycliophora and Micrognathozoa. Zoologischer Anzeiger, 239, 297-318.
  • Sperling, E.A., Pisani, D., & Peterson, K.J. (2006) Poriferan paraphyly and its implications for Precambrian palaeobiology. In: (P. Vickers-Rich and P. Komarower, Eds.) The Rise and Fall of the Ediacaran Biota, Geological Society of London, London, pp. 355-368.
  • Struck, T.H., Schult, N., Kusen, T., Hickman, E., Bleidorn, C., McHugh, D., & Halanych, K.M. (2007) Annelid phylogeny and the status of Sipuncula and Echiura. BMC Evolutionary Biology, 7, 11.
  • Telford, M.J., Wise, M.J., & Gowri-Shankar, V. (2005) Consideration of RNA secondary structure significantly improves likelihood-based estimates of phylogeny: examples from the Bilateria. Molecular Biology and Evolution, 22, 1129- 1136.
  • Valentine, J.W., Jablonski, D., & Erwin, D.H. (1999) Fossils, molecules and embryos: new perspectives on the Cambrian explosion. Development, 126, 851-859.
  • Voight, J.R. (2005) First report of the enigmatic echinoderm Xyloplax from the North Pacific. Biological Bulletin, 208, 77-80.
  • Waeschenbach, A., Telford, M.J., Porter, J.S., & Littlewood, D.T.J. (2006) The complete mitochondrial genome of Flustrellidra hispida and the phylogenetic position of Bryozoa among the Metazoa. Molecular Phylogenetics and Evolution, 40, 195-207.
  • Wanninger, A., Fuchs, J., & Haszprunar, G. (2007) Anatomy of the serotonergic nervous system of an entoproct creeping-type larva and its phylogenetic implications. Invertebrate Biology, 126, 268-278.
  • Wanninger, A., & Haszprunar, G. (2001) The expression of an engrailed protein during embryonic shell formation of the tusk-shell, Antalis entalis (Mollusca, Scaphopoda). Evolution & Development, 3, 312-321.
  • Wanninger, A., & Haszprunar, G. (2002a) Chiton myogenesis: perspectives for the development and evolution of larval and adult muscle systems in molluscs. Journal of Morphology, 251, 103-113.
  • Wanninger, A., and Haszprunar, G. (2002b) Muscle development in Antalis entalis (Mollusca, Scaphopoda) and its significance for scaphopod relationships. Journal of Morphology, 254, 53-64.
  • Wanninger, A., and Haszprunar, G. (2003) The development of the serotonergic and FMRF-amidergic nervous system in Antalis entalis (Mollusca, Scaphopoda). Zoomorphology, 122, 77-85.
  • Webster, B.L., Copley, R.R., Jenner, R.A., Mackenzie-Dodds, J.A., Bourlat, S.J., Rota-Stabelli, O., Littlewood, D.T.J., & Telford, M.J. (2006) Mitogenomics and phylogenomics reveal priapulid worms as extant models of the ancestral Ecdysozoan. Evolution & Development, 8, 502-510.
  • Wingstrand, K.G. (1972) Comparative spermatology of a pentastomid, Raillietiella hemidactyli, and a branchiuran crus- tacean, Argulus foliaceus, with a discussion of pentastomid relationships. Det Kongelige Danske Videnskabernes Selskabs Biologiske Skrifter, 19, 1-72.
  • Winnepenninckx, B., Backeljau, T., & De Wachter, R. (1995) Phylogeny of protostome worms derived from 18S rRNA sequences. Molecular Biology and Evolution, 12, 641-649.
  • Winnepenninckx, B., Backeljau, T., & De Wachter, R. (1996) Investigation of molluscan phylogeny on the basis of 18S rRNA sequences. Molecular Biology and Evolution, 13, 1306-1317.
  • Winnepenninckx, B., Backeljau, T., and Kristensen, R. M. (1998) Relations of the new phylum Cycliophora. Nature, 393, 636-638.
  • Wolf, Y.I., Rogozin, I.B., & Koonin, E.V. (2004) Coelomata and not Ecdysozoa: evidence from genome-wide phylogenetic analysis. Genome Research, 14, 29-36.
  • Worsaae, K., & Muller, M.C.M. (2004) Nephridial and gonoduct distribution patterns in Nerillidae (Annelida: Polychaeta) examined by tubulin staining and cLSM. Journal of Morphology, 261, 259-269.
  • Xiao, S., Yuan, X., & Knoll, A.H. (2000) Eumetazoan fossils in terminal Proterozoic phosphorites? Proceedings of the National Academy of Sciences of the USA, 97, 13684-13689.
  • Zantke, J., Wolff, C., & Scholtz, G. (2007) Three-dimensional reconstruction of the central nervous system of Macrobiotus hufelandi (Eutardigrada, Parachela): implications for the phylogenetic position of Tardigrada. Zoomorphology, DOI 10.1007/s00435-007-0045-1.
  • Zrzavy, J. (2003) Gastrotricha and metazoan phylogeny. Zoologica Scripta, 32, 61-81.
  • Zrzavy, J., Hypsa, V., & Tietz, D.F. (2001) Myzostomida are not annelids: Molecular and morphological support for a clade of animals with anterior sperm flagella. Cladistics, 17, 170-198.
  • Zrzavy, J., Mihulka, S., Kepka, P., Bezdek, A., & Tietz, D. (1998) Phylogeny of the Metazoa based on morphological and 18S ribosomal DNA evidence. Cladistics, 14, 249-285.