Published April 23, 2020 | Version v1
Journal article Open

Molecular circumscription of new species of Gyrocotyle Diesing, 1850 (Cestoda) from deep-sea chimaeriform holocephalans in the North Atlantic

  • 1. Division of Parasites and Vectors, Department of Life Sciences, Natural History Museum, London SW7 5BD, UK
  • 2. Natural History Museum, University of Oslo, P.O. Box 1172, Blindern, 0318 Oslo, Norway

Description

Bray, Rodney A., Waeschenbach, Andrea, Littlewood, D. Timothy J., Halvorsen, Odd, Olson, Peter D. (2020): Molecular circumscription of new species of Gyrocotyle Diesing, 1850 (Cestoda) from deep-sea chimaeriform holocephalans in the North Atlantic. Systematic Parasitology 97: 285-296, DOI: https://doi.org/10.1007/s11230-020-09912-w

Files

source.pdf

Files (897.7 kB)

Name Size Download all
md5:f5fca7b9511ff96faa8237d8dba86e50
897.7 kB Preview Download

Linked records

Additional details

Identifiers

LSID
urn:lsid:plazi.org:pub:FFFCFFB9511FF96FFF82FFD8FFA86E50
URL
http://publication.plazi.org/id/FFFCFFB9511FF96FFF82FFD8FFA86E50

References

  • Bandoni, S. M., & Brooks, D. R. (1987). Revision and phylogenetic analysis of the Gyrocotylidea Poche, 1926 (Platyhelminthes: Cercomeria: Cercomeromorpha). Canadian Journal of Zoology, 65, 2369-2389.
  • Berland, B., Bristow, G. A., & Grahl Nielsen, O. (1990). Chemotaxonomy of Gyrocotyle (Platyhelminthes: Cercomeria) species, parasites of chimaerid fish (Holocephali), by chemometry of their fatty acids. Marine Biology, 105, 185-189.
  • Bristow, G. A. (1992). On the distribution, ecology and evolution of Gryocotyle [sic] urna, G. confusa and G. nybelini (Cercomeromorpha: Gyrocotylidea) and their host Chimaera monstrosa (Holocephalidea: Chimaeridae) in Norwegian waters, with a review of the species question. Sarsia, 77, 119-124.
  • Bristow, G. A., & Berland, B. (1988). A preliminary electrophoretic investigation of the gyrocotylid parasites of Chimaera monstrosa L. Sarsia, 73, 75-77.
  • Bunkley-Williams, L., & Williams, E. H. (2004). New locality, depth, and size records and species character modifications of some Caribbean deep-reef/shallow slope fishes and a new host and locality record for the chimaera cestodarian. Caribbean Journal of Science, 40, 88-119.
  • Caira, J. N., Jensen, K., & Healy, C. J. (1999). On the phylogenetic relationships among tetraphyllidean, lecanicephalidean and diphyllidean tapeworm genera. Systematic Parasitology, 42, 77-151.
  • Caira, J. N., Jensen, K., Waeschenbach, A., Olson, P. D., & Littlewood, D. T. J. (2014). Orders out of chaos - molecular phylogenetics reveals the complexity of shark and stingray tapeworm relationships. International Journal for Parasitology, 44, 55-73.
  • Castresana, J. (2000). Selection of conserved blocks from multiple alignments for their use in phylogenetic analysis. Molecular Biology and Evolution, 17, 540-552.
  • Colin, J. A., Williams, H. H., & Halvorsen, O. (1986). One or three gyrocotylideans (Platyhelminthes) in Chimaera monstrosa (Holocephali)? Journal of Parasitology, 72, 10-21.
  • Gibson, D. I. (1994). Order Gyrocotylidea Poche, 1926. In: Khalil, L. F., Jones, A. & Bray, R. A. (Eds), Keys to the cestode parasites of vertebrates Wallingford: CAB International, pp. 11-13.
  • Hogans, W. E., & Hurlbut, T. R. (1984). Parasites of the knifenose chimaera, Rhinochimaera atlantica, from the northwest Atlantic Ocean. Canadian Field-Naturalist, 98, 365.
  • ICZN (2012). International Commission on Zoological Nomenclature: Amendment of articles 8, 9, 10, 21 and 78 of the International Code of Zoological Nomenclature to expand and refine methods of publication. Bulletin of Zoological Nomenclature, 69, 161-169.
  • Inoue, J. G., Miya, M., Lam, K., Tay, B.-H., Danks, J. A., Bell, J., et al. (2010). Evolutionary origin and phylogeny of the modern holocephalans (Chondrichthyes: Chimaeriformes): a mitogenomic perspective. Molecular Biology and Evolution, 27, 2576-2586.
  • Karlsbakk, E., Aspholm, P. E., Berg, V., Hareide, N. R., & Berland, B. (2002). Some parasites of the small-eyed rabbitfish, Hydrolagus affinis (Capello, 1867) (Holocephali), caught in deep waters off SW Greenland. Sarsia, 87, 179-184.
  • Katoh, T. (2008). Recent developments in the MAFFT multiple sequence alignment program. Briefings in Bioinformatics, 9, 286-298.
  • Licht, M., Schmuecker, K., Huelsken, T., Hanel, R., Bartsch, P., & Paeckert, M. (2012). Contribution to the molecular phylogenetic analysis of extant holocephalan fishes (Holocephali, Chimaeriformes). Organisms Diversity & Evolution, 12, 421-432.
  • Littlewood, D. T. J., Curini-Galletti, M., & Herniou, E. A. (2000). The interrelationships of Proseriata (Platyhelminthes: Seriata) tested with molecules and morphology. Molecular Phylogenetics and Evolution, 16, 449-466.
  • Littlewood, D. T. J., & Olson, P. D. (2001). Small subunit rDNA and the Platyhelminthes: Signal, noise, conflict and compromise. In: Littlewood, D. T. J. & Bray, R. A. (Eds), Interrelationships of the Platyhelminthes. London: Taylor & Francis, pp. 262-278.
  • Maddison, W. P., & Maddison, D. R. (2018). Mesquite: a modular system for evolutionary analysis. Version 3.01. http://www.mesquiteproject.org. Accessed Dec 2019.
  • Mauchline, J., & Gordon, J. D. M. (1984). Incidence of parasitic worms in stomachs of pelagic and demersal fish of the Rockall Trough, northeastern Atlantic Ocean. Journal of Fish Biology, 24, 281-285.
  • Nylander, J. A. A. (2004). MrModeltest v2. Program distributed by the author. Evolutionary Biology Centre, Uppsala University. https://www.abc.se/͠nylander/. Accessed Dec 2019
  • Olson, P. D., & Caira, J. N. (1999). Evolution of the major lineages of tapeworms (Platyhelminthes: Cestoidea) inferred from 18S ribosomal DNA and elongation factor- 1a. Journal of Parasitology, 85, 1134-1159.
  • Olson, P. D., Littlewood, D. T. J., Bray, R. A., & Mariaux, J. (2001). Interrelationships and evolution of the tapeworms (Platyhelminthes: Cestoda). Molecular Phylogenetics and Evolution, 19, 443-467.
  • Olson, P. D., Poddubnaya, L. G., Littlewood, D. T. J., & Scholz, T. (2008). On the position of Archigetes and its bearing on the early evolution of the tapeworms. Journal of Parasitology, 94, 898-904.
  • Parukhin, A. M. (1966). [On the species composition of the helminth fauna of fishes in the South Atlantic]. Materialy Nauchnoi Konferentsii Vsesoyuznogo Obshchestva Gel mintologov& , 219-222 (In Russian).
  • Parukhin, A. M. (1968). Helminthofauna of fishes of South Atlantic. Biologiya Morya, Kiev, 14, 96-113. (In Russian).
  • Ronquist, F., & Huelsenbeck, J. P. (2003). MRBAYES 3: Bayesian phylogenetic inference under mixed models. Bioinformatics, 19, 1572-1574.
  • Simmons, J. E., Buteau, G. H., Jr., Macinnis, A. J., & Kilejian, A. (1972). Characterization and hybridization of DNAs of gyrocotylidean parasites of chimaeroid fishes. International Journal for Parasitology, 2, 273-278.
  • Talavera, G., & Castresana, J. (2007). Improvement of phylogenies after removing divergent and ambiguously aligned blocks from protein sequence alignments. Systematic Biology, 56, 564-577.
  • van der Auwera, G., Chapelle, S., & de Wachter, R. (1994). Structure of the large ribosomal subunit RNA of Phytophthora megasperma, and the phylogeny of the oomycetes. FEBS Letters, 338, 133-136.
  • van der Land, J., & Templeman, W. (1968). Two new species of Gyrocotyle (Monogenea) from Hydrolagus affinis (Brito Capello) (Holocephali). Journal of the Fisheries Research Board of Canada, 11, 2365-2385.
  • Waeschenbach, A., Webster, B. L., & Littlewood, D. T. J. (2012). Adding resolution to ordinal level relationships of tapeworms (Platyhelminthes: Cestoda) with large fragments of mtDNA. Molecular Phylogenetics and Evolution, 63, 834-847.
  • Williams, H. H., & Bray, R. A. (1984). Chimaerocestos prudhoei gen. et sp. nov., representing a new family of tetraphyllideans and the first record of strobilate tapeworms from a holocephalan. Parasitology, 88, 105-116.
  • Williams, H. H., Colin, J. A., & Halvorsen, O. (1987). Biology of gyrocotylideans with emphasis on reproduction, population ecology and phylogeny. Parasitology, 95, 173-207.