Published September 28, 2018 | Version v1
Journal article Open

Biological Inclusions in Amber from the Paleogene Chickaloon Formation of Alaska

  • 1. Division of Invertebrate Zoology, American Museum of Natural History, New York.
  • 2. Department of Geology & Environmental Geosciences, Lafayette College, Easton, Pennsylvania.
  • 3. Department of Biology, New Jersey Institute of Technology, Newark.
  • 4. Department of Earth & Environment, Franklin & Marshall College, Lancaster, Pennsylvania.

Description

Grimaldi, David A., Sunderlin, David, Aaroe, Georgene A., Dempsky, Michelle R., Parker, Nancy E., Tillery, George Q., White, Jaclyn G., Barden, Phillip, Nascimbene, Paul C., Williams, Christopher J. (2018): Biological Inclusions in Amber from the Paleogene Chickaloon Formation of Alaska. American Museum Novitates 2018 (3908): 1-37, DOI: 10.1206/3908.1, URL: http://www.bioone.org/doi/10.1206/3908.1

Files

source.pdf

Files (11.6 MB)

Name Size Download all
md5:74985ac7c58b2f20aa7c434051434590
11.6 MB Preview Download

Linked records

Additional details

References

  • Ander, K. 1942. Die Insektenfauna des baltischen Bernsteins nebst damit verknupπen zoogeographischen Problem. Lunds Universitets Arsskriπ 38: 3-82.
  • Anderson, K.B., and B.A. LePage. 1995. Analysis of fossil resins from Axel Heiburg Island, Canadian Arctic. In K.B. Anderson and J.C. Crelling (editors), Amber, resinite, and fossil resins: 170-192. Washington D.C.: American Chemical Society Symposium Series 617.
  • Archibald, S.B., and A.P. Rasnitsyn. 2018. Two new species of fossil Eomerope (Mecoptera: Eomeropidae) from the Ypresian Okanagan Highlands, far-western North America, and Eocene Holarctic dispersal of the genus. Canadian Entomologist 150 (3): 393-403.
  • Archibald, S.B., S.D. Cover, and C.S. Moreau. 2006. Bulldog ants of the Eocene Okanagan Highlands (British Columbia, Canada and Washington State, USA). Canadian Journal of Earth Sciences 42: 119-136.
  • Archibald, S.B., A.P. Rasnitsyn, D.J. Brothers, and R.W. Mathewes. 2018. Modernisation of the Hymenoptera: ants, bees, wasps, and sawflies of the early Eocene Okanagan Highlands of western North America. Canadian Entomologist 150 (2): 205-257.
  • Atkinson, T.H., P.G. Koehler, and R.S. Patterson. 1991. Catalog and atlas of the cockroaches (Dictyoptera) of North America north of Mexico. Miscellaneous Publications of the Entomological Society of America 78: 1-86.
  • Bains, S.R., M. Corfield, and R.D. Norris. 1999. Mechanisms of climate warming at the end of the Paleocene. Science 285: 724-727.
  • Barden, P. 2017. Fossil ants (Hymenoptera: Formicidae): ancient diversity and the rise of modern lineages. Myrmecological News 24: 1-30.
  • Bell, N.E., and P.V. York. 2007. Vetiplanaxis pyrrhobryoides, a new fossil moss genus and species from Middle Cretaceous Burmese amber. Bryologist 110: 514-520.
  • Brannick, A., D. Sunderlin, C.J. Williams, and J. Lerback. 2012. Leaf damage intensity and diversity in the Paleogene Chickaloon and Arkose Ridge formations, south-central Alaska. Geological Society of America Abstracts with Programs 44 (2): 64.
  • Breton, G., C. Gauthier, and D. Vizcaino. 1999. Land and freshwater microflora in a Sparnacian amber from the Corbieres (South France): first observations. Estudios del Museo de Ciencias Naturales de Alava 14 (2): 161-166.
  • Cai, C., J. Hava, and D. Huang. 2017. The earliest Attagenus species (Coleoptera: Dermestidae: Attageninae) from Upper Cretaceous Burmese amber. Cretaceous Research 72: 95-99.
  • Deng, C., A. Slipinski, D. Ren, and H. Pang. 2017. The oldest dermestid beetle from the Middle Jurassic of China (Coleoptera: Dermestidae). Annales Zoologici 67: 109-112.
  • Dlussky, G.M., A.P. Rasnitsyn, and K.S. Perfilieva. 2015. The ants (Hymenoptera: Formicidae) of Bol'shaya Svetlovodnaya (Late Eocene of Sikhotealin, Russian Far East). Caucasian Entomological Bulletin 11: 131-152.
  • Dunlop, J.A., D. Penney, and D. Jekel. 2018. A summary list of fossil spiders and their relatives. The world spider catalog. Natural History Museum Bern. Online resource (http://wsc.nmbe.ch), version 19.0, accessed on 10 March 2018. [doi: 10.24436/2]
  • Eberle, J.J., and D.R. Greenwood. 2012. Life at the top of the greenhouse Eocene world - a review of the Eocene flora and vertebrate fauna from Canada's High Arctic. Bulletin of the Geological Society of America 124: 3-23.
  • Engel, M.S., and D.A. Grimaldi. 2004. A new rock crawler in Baltic amber, with comments on the order (Mantophasmatodea: Mantophasmatidae). American Museum Novitates 3431: 1-11.
  • Essig, E.O. 1938. Family Aphididae. In F.M. Carpenter et al. (editors), Insects and arachnids from Canadian amber: 7-62. University of Toronto Studies, Geological Series 40 (1937).
  • Evenhuis, N.L. 1994. Catalogue of the fossil flies of the world (Insecta: Diptera). Leiden: Backhuys Publishers.
  • Flores, R.M., and G.D. Stricker. 1993. Early Cenozoic depositional systems, Wishbone Hill District, Matanuska Coal Field, Alaska. Geologic Studies in Alaska by the U.S. Geological Survey: U.S. Geological Survey Bulletin 2068: 101-117.
  • Frahm, J.P., and A.E. Newton. 2005. A new contribution to the moss flora of Dominican amber. Bryologist 108: 526-536.
  • Gingerich, P.D. 2003. Mammalian responses to climate change at the Paleocene-Eocene boundary: Polecat Bench record in the northern Bighorn Basin, Wyoming. Geological Society of America Special Paper 369: 463-478.
  • Girard, V., et al. 2009. Taphonomy and palaeoecology of mid-Cretaceous amber-preserved microorganisms from southwestern France. Geodiversitas 31: 153-162.
  • Goodarzi, F., and T. Gentzis. 1987. Depositional setting determined by organic petrography of the Middle Eocene Hat Creek No. 2 Coal Deposit, British Columbia, Canada. Bulletin of Canadian Petroleum Geologists 35: 197-211.
  • Grimaldi, D.A. 1996. Amber: window to the past. New York: Abrams/American Museum of Natural History.
  • Grimaldi, D., and D. Agosti, D. 2000. A formicine in New Jersey Cretaceous amber (Hymenoptera: Formicidae) and early evolution of the ants. Proceedings of the National Academy of Sciences of the United States of America 97: 13678-13683.
  • Grimaldi, D.A., and M.S. Engel. 2005. Evolution of the insects. New York: Cambridge University Press.
  • Grimaldi, D. A., J.A. Lillegraven, T.W. Wampler, D. Bookwalter, and A. Shedrinsky. 2000. Amber from Upper Cretaceous through Paleocene strata of the Hanna Basin, Wyoming, with evidence for source and taphonomy of fossil resins. Rocky Mountain Geology 35 (2): 163-204.
  • Grimaldi, D., A. Shmakov, and N. Fraser. 2004. Mesozoic thrips and early evolution of the order Thysanoptera (Insecta). Journal of Paleontology 78: 941-952.
  • Harms, D., and J.A. Dunlop. 2017. The fossil history of pseudoscorpions (Arachnida: Pseudoscorpiones). Mitteilungen aus dem Museum fur Naturkunde in Berlin. Fossil Record 20: 215-238.
  • Hava, J., J. Prokop, and A. Herrmann. 2008. New fossil dermestid beetles (Coleoptera: Dermestidae) from the Baltic amber-III. Acta Societatis Zoologicae Bohemicae 17 (2007): 151-157.
  • Hedenas, L., J. Heinrichs, and A.R. Schmidt. 2014. Bryophytes of the Burmese amber forest: amending and expanding the circumscription of the Cretaceous moss genus Vetiplanaxis. Review of Palaeobotany and Palynology 209: 1-10.
  • Heie, O.E., and E.M. Pike. 1992. New aphids in Cretaceous amber from Alberta (Insecta, Homoptera). Canadian Entomologist 124: 1027-1053.
  • Heinrichs, J., L. Hedenas, A. Schafer-Verwimp, K. Feldberg, and A.R. Schmidt. 2014a. An in situ preserved moss community in Eocene Baltic amber. Review of Palaeobotany and Palynology 210: 113-118.
  • Hennig, W. 1964. Die Dipteren-Familie Sciadoceridae im baltischen Bernstein (Diptera: Cyclorrhapha Aschiza). Stuttgarter Beitrage zur Naturkunde 127: 1-10.
  • Hong, Y. 2002. Amber insects of China. Beijing: Beijing Scientific and Technological Publishing House.
  • Hubers, M., and H. Kerp. 2012. Oldest known mosses discovered in Mississippian (late Visean) strata of Germany. Geology 40: 755-758.
  • Hutchison, J.H., and A.D. Pasch. 2004. First record of a turtle (Protochelydra, Chelydridae, Testudines) from the Cenozoic of Alaska (Chickaloon Formation, Paleocene-Eocene). PaleoBios 24: 1-5.
  • Ignatov, M.S., J. Heinrichs, A. Schafer-Verwimp, and E.E. Perkovsky. 2016. The first record of a bryophyte in Upper Cretaceous amber from Taimyr, northern Siberia: Taimyrobryum martynoviorum gen. et sp. nov. (Bryopsida). Cretaceous Research 65: 25-31.
  • Kania, I., and P. Wegierek. 2005. Two new species of alate aphids (Hemiptera: Aphidoidea) from Upper Cretaceous Canadian amber. Polski Pismo Entomologiczne 74: 277-286.
  • Katz, M.E., D.K. Pak, G.R. Dickens, and K.G. Miller. 1999. The source and fate of massive carbon input during the latest Paleocene Thermal Maximum. Science 286: 1531-1533.
  • Kettunen, E., et al. 2015. The enigmatic hyphomycete Torula sensu Caspary revisted. Review of Palaeobotany and Palynology 219: 183-193.
  • Kirejtshuk, A.G., D. Azar, P. Tafforeau, R. Boistel, and V. Fernandez. 2009. New beetles of Polyphaga (Coleoptera, Polyphaga) from Lower Cretaceous Lebanese amber. Denisia 26: 119-130.
  • Kiselyova, T., and J.V. McHugh. 2006. A phylogenetic study of Dermestidae (Coleoptera) based on larval morphology. Systematic Entomology 31: 469-507.
  • Krivolutsky, D.A., and A.Y. Druk. 1986. Fossil oribatid mites. Annual Review of Entomology 31: 533-545.
  • Labandeira, C.C., T.L. Phillips, and R.A. Norton. 1997. Oribatid mites and the decomposition of plant tissues in Paleozoic coal-swamp forests. Palaios 12: 319-353.
  • Lapolla, J.S., S.G. Brady, and S.O. Shattuck. 2010. Phylogeny and taxonomy of the Prenolepis genus-group of ants (Hymenoptera: Formicidae). Systematic Entomology 35: 118-131.
  • Larsson, S.G. 1978. Baltic amber - a paleobiological study. Entomonograph 1: 1-192.
  • Legun, A. 1996. Amber in British Columbia. British Columbia Geological Survey, Geological Fieldwork 1996, Paper 1997-1: 333-338.
  • Lomolino, M.V. 2000. Ecology's most general, yet protean pattern: the species-area relationship. Journal of Biogeography 27: 17-26.
  • MacArthur, R.H., and E.O. Wilson. 1963. An equilibrium theory of insular biogeography. Evolution 17: 428-442.
  • McInerney, F.A., and S.L. Wing. 2011. The Paleocene-Eocene Thermal Maximum: A perturbation of carbon cycle, climate, and biosphere with implications for the future. Annual Review of Earth and Planetary Sciences 39: 489-516.
  • McKellar, R.C., and A.P. Wolfe. 2010. Canadian amber. Chapter 9. In D. Penney (editor), Biodiversity of fossils in amber from the major world deposits: 149-167. Manchester: Siri Scientific Press.
  • Mustoe, G.E. 1985. Eocene amber from the Pacific coast of North America. Bulletin of the Geological Society of America 96: 1530-1536.
  • Neff, J., J. Hagadorn, D. Sunderlin, and C.J. Williams. 2011. Sedimentology, paleoenvironment and paleoecology of a Late Paleocene high-latitude facies of the Cook Inlet region, Alaska. United States Geological Survey Professional Paper 389-A: A1-A29.
  • Nel, A., G. De Ploeg, J. Milliet, J.J. Menier, and A. Waller. 2004. The French ambers: a general conspectus and the Lowermost Eocene amber deposit of Le Quesnoy in the Paris Basin. Geologica Acta 2 (1): 3.
  • Nel, P., E. Penalver, D. Azar, G. Hodebert, and A. Nel. 2010. Modern thrips families Thripidae and Phlaeothripidae in Early Cretaceous amber (Insecta: Thysanoptera). Annales de la Societe Entomologique de France 46: 154-163.
  • Nel, P., A. R. Schmidt, C. Bassler, and A. Nel. 2011. Fossil thrips of the family Uzelothripidae suggest 53 million years of morphological and ecological stability. Acta Palaeontologica Polonica 58 (3): 609-614.
  • Norton, R.A. 2000. First record of Collohmannia (C. schusteri n. sp.) and Hermannia (H. sellnicki n. sp.) from Baltic amber, with notes on Sellnick's genera of fossil oribatid mites (Acari: Oribatida). Acarologia 46 (1-2), 111-125.
  • Norton, R.A., and V.M. Behan-Pelletier. 2009. Suborder Oribatida. In G.W. Krantz and D.E. Walter, A manual of acarology, 3rd ed.: 430-564. Lubbock, TX: Texas Tech University Press.
  • Norton, R.A., P.M. Bonamo, J.D. Grierson, and W.A. Shear. 1988. Oribatid mite fossils from a terrestrial Devonian deposit near Gilboa, New York. Journal of Paleontology 62: 259-269.
  • Nutting, W.L., and H.G. Spangler. 1969. The hastate setae of certain dermestid larvae: an entangling defense mechanism. Annals of the Entomological Society of America 62: 763-769.
  • Penalver, E., et al. 2017. Ticks parasitised feathered dinosaurs as revealed by Cretaceous amber assemblages. Nature Communications 8: 1924. [doi: 10.1038/s41467-017-01550]
  • Penney, D. (editor). 2010. Biodiversity of fossils in amber from the major world deposits. Manchester: Siri Scientific Press.
  • Penney, D., and R.F. Preziosi. 2014. Estimating fossil ant species richness in Eocene Baltic amber. Acta Palaeontologica Polonica 59: 927-929.
  • Penney, D., C.P. Wheater, and P.A. Selden. 2003. Resistance of spiders to Cretaceous-Tertiary extinction events. Evolution 57: 2599-2607.
  • Peris, D., and J. Hava. 2016. New species from Late Cretaceous New Jersey amber and stasis in subfamily Attageninae (Insecta: Coleoptera: Dermestidae). Journal of Paleontology 90: 491-498.
  • Perkovsky, E.E., V. Yu. Zosimovich, A.P. Vlaskin. 2010. Rovno amber. Chapter 7. In D. Penney (editor), Biodiversity of fossils in amber from the major world deposits: 116-136. Manchester: Siri Scientific Press.
  • Pike, E.M. 1993. Amber taphonomy and collecting biases. Palaios 8: 411-419.
  • Poinar, G., B. Archibald, and A. Brown. 1999. New amber deposit provides evidence of early Paleogene extinctions, paleoclimates, and past distributions. Canadian Entomologist 131: 171-177.
  • Read, P.B. 1990. Cretaceous and Tertiary stratigraphy and industrial minerals, Hat Creek, Southern British Columbia. Ministry of Energy, Mines and Petroleum Resources, BCMEMPR Open File 1990-23. Online resource (http://www.empr.gov.bc.ca/Mining/Geoscience/PublicationsCatalogue/OpenFiles/1990/Pages/1990-23.aspx).
  • Richards, W.R. 1966. Systematics of fossil aphids from Canadian amber (Homoptera: Aphididae). Canadian Entomologist 98: 746-760.
  • Rust, J., and N.M. Andersen. 1999. Giants ants from the Paleogene of Denmark with a discussion of the fossil history and early evolution of ants (Hymenoptera: Formicidae). Zoological Journal of the Linnean Society 125: 331-348.
  • Rust, J., et al. 2010. Biogeographic and evolutionary implications of a diverse paleobiota in amber from the Early Eocene of India. Proceedings of the National Academy of Sciences of the United States of America 107: 18360-18365.
  • Saint Martin, J.-P., and S. Saint Martin. 2018. Exquisite preservation of a widespread filamentous microorganism in French Cretaceous ambers: Crucial for revising a controversial fossil. Comptes Rendus Palevol 17: 417-434.
  • Schawaller, W., W.A. Shear, and P.M. Bonamo. 1991. The first Paleozoic pseudoscorpions (Arachnida, Pseudoscorpionida). American Museum Novitates 3009: 1-17.
  • Schmidt, A.R., and U. Schafer. 2005. Leptotrichites resinatus new genus and species: a fossil sheathed bacterium in alpine Cretaceous amber. Journal of Paleontology 79: 175-184.
  • Schmidt, A.R., et al. 2014. Amber fossils of sooty moulds. Review of Palaeobotany and Palynology 200: 53-64.
  • Scotese, C. 2014. Atlas of Paleogene paleogeographic maps (Mollweide projection), maps 8-15, vol. 1, The Cenozoic. Evanston, IL: PALEOMAP Project Atlas for ArcGIS.
  • Selden, P.A., and D. Penney. 2010. Fossil spiders. Biological Reviews 85: 171-206.
  • Selden, P.A., H.M. Anderson, and J.M. Anderson. 2009. A review of the fossil record of spiders (Araneae) with special reference to Africa, and description of a new specimen from the Triassic Molteno Formation of South Africa. African Invertebrates 50: 105-116.
  • Sidorchuk, E.A. 2013. A new technique for the preparation of small-sized amber samples with application to mites. In Insect Evolution in an amberiferous and stone alphabet. Proceedings of the 6th International Congress on Fossil Insects, Arthropods and Amber: 189-201. Leiden: E.J. Brill.
  • Sidorchuk, E.A., and R.A. Norton. 2010. Redescription of the fossil oribatid mite Scutoribates perornatus, with implications for systematics of Unduloribatidae (Acari: Oribatida). Zootaxa 2666: 45-67.
  • Sidorchuk, E.A., and R.A. Norton. 2011. The fossil mite family Archaeorchestidae (Acari, Oribatida) II: redescription of Plategeocranus sulcatus and family-group relationships. Zootaxa 3051: 14-40.
  • Smith, J.J., S.T. Hasiotis, M J. Kraus, and D.T. Woody. 2009. Transient dwarfism of soil fauna during the Paleocene-Eocene Thermal Maximum. Proceedings of the National Academy of Sciences of the United States of America 106: 17655-17660.
  • Speranza, M., C. Ascaso, X. Delclos, and E. Penalver. 2015. Cretaceous mycelia preserving fungal polysaccharides: taphonomic and paleoecological potential of microorganisms preserved in fossil resins. Geologica Acta 13 (4): 363-385.
  • Suan, G., et al. 2017. Subtropical climate conditions and mangrove growth in Arctic Siberia during the Early Eocene. Geology 45: 539-542.
  • Sunderlin, D., G. Loope, N.E. Parker, and C.J. Williams. 2011. Paleoclimatic and paleoecological implications of a Paleocene-Eocene fossil leaf assemblage, Chickaloon Formation, Alaska. Palaios 26: 335-345.
  • Sunderlin, D., et al. 2014. Paleoenvironment and paleoecology of a late Paleocene high-latitude terrestrial succession, Arkose Ridge Formation at Box Canyon, southern Talkeetna Mountains, Alaska. Palaeogeography, Palaeoclimatology, Palaeoecology 401: 57-80.
  • Trevisani, E., C.A. Papazzoni, E. Ragazzi, and G. Roghi. 2005. Early Eocene amber from the "Pesciara di Bolca"(Lessini Mountains, Northern Italy). Palaeogeography, Palaeoclimatology, Palaeoecology: 223 (3-4): 260-274.
  • Triplehorn, D.M., D.L. Turner, and C.W. Naeser. 1984. Radiometric age of the Chickaloon Formation of south-central Alaska: Location of the Paleocene-Eocene boundary. Geological Society of America Bulletin 95: 740-742.
  • Trop, J.M., K.D. Ridgway, and T.L. Spell. 2003. Synorogenic sedimentation and forearc basin development along a transpressional plate boundary, Matanuska Valley-Talkeetna Mountains, southern Alaska. In V.B. Sisson, S. Roeske, and T.L. Pavlis (editors), Geology of a transpressional orogen developed during ridge-trench interaction along the north Pacific margin. Geological Society of America Special Paper 371: 89-118.
  • Tuovila, H., et al. 2013. Stuck in time-a new Chaenothecopsis species with proliferating ascomata from Cunninghamia resin and its fossil ancestors in European amber. Fungal Diversity 58: 199-213.
  • Vickery, V.R., and D.K. McE. McKevan. 1985. The insects and arachnids of Canada, part 14. The grasshoppers, crickets and related insects of Canada and adjacent regions. Ulonata: Dermaptera, Cheleutoptera, Notoptera, Dictuoptera, Grylloptera, and Orthoptera. Agriculture Canada, Research Branch Publication 1777.
  • Walker, B.J. 2009. Gastropod assemblages from the Tertiary Chickaloon Formation in southern Alaska. In A.P. deWet, S. Mertzman, K. Erb, and D. Kadyk (editors), Proceedings of the 22nd Annual Keck Research Symposium in Geology (Franklin & Marshall College, April 2009): 101-105. Lancaster, Pennsylvania: Consortium Colleges and the National Science Foundation.
  • Wang, B., J. Rust, M.S. Engel, J. Szwedo, S. Dutta, A. Nel, Y. Fan, F. Meng, G. Shi, E. A. Jarzembowski, and T. Wappler. 2014. A diverse paleobiota in Early Eocene Fushun amber from China. Current Biology 24 (14): 1606-1610.
  • Ward, P.S., B.B. Blaimer, and B.B. and B.L. Fisher. 2016. A revised phylogenetic classification of the ant subfamily Formicinae (Hymenoptera: Formicidae), with resurrection of the genera Colobopsis and Dinomyrmex. Zootaxa 4072: 343-357.
  • Weitschat, W., and W. Wichard. 2010. Baltic amber. Chapter 6. In D. Penney (editor), Biodiversity of fossils in amber from the major world deposits: 80-115. Manchester: Siri Scientific Press.
  • Williams, C.J., K.D. Trostle, and D. Sunderlin. 2010. Fossil wood in coal-forming environments of the late Paleoecene-early Eocene Chickaloon Formation. Palaeogeography, Palaeoclimatology, Palaeoecology 295: 363-375.
  • Wolfe, J.A., D. Hopkins, and E.B. Leopold. 1966. Tertiary stratigraphy and paleobotany of the Cook Inlet Region, Alaska. U.S. Geological Survey Professional Paper 398-A: 1-29.
  • Zherikhin, V.V., and I.D. Sukatsheva. 1973. On the Cretaceous insect-bearing "ambers" (retinites) from North Siberia. In E.P. Narchuk (editor), Problems in insect palaeontology, XXIV annual lectures in memory of N.A. Kholodkovskogo 1-2 April 1971: 3-48. Leningrad: Nauka Press.