Published March 15, 2016
| Version v1
Journal article
Restricted
Chemistry supports the identification of gender-specific reproductive tissue in Tyrannosaurus rex
- 1. Department of Biological Sciences, North Carolina State University, Raleigh NC 27695, USA. North Carolina Museum of Natural Sciences, Raleigh NC 27601, USA
- 2. Department of Biological Sciences, North Carolina State University, Raleigh NC 27695, USA.
- 3. Department of Anatomy, Des Moines University, Des Moines IA 50312, USA.
- 4. Department of Agrobiology, Niigata University, Niigata 9502181, Japan.
Description
Mary Higby Schweitzer, Wenxia Zheng, Lindsay Zanno, Sarah Werning, Toshie Sugiyama (2016): Chemistry supports the identification of gender-specific reproductive tissue in Tyrannosaurus rex. Scientific Reports 6: 23099, DOI: 10.1038/srep23099
Files
Linked records
Oops! Something went wrong while fetching results.
Additional details
Identifiers
- LSID
- urn:lsid:plazi.org:pub:FFE9FF88FF80FFE4FFDEFFCC4306FFF1
- URL
- http://publication.plazi.org/id/FFE9FF88FF80FFE4FFDEFFCC4306FFF1
References
- 1. Schweitzer, M. H., Elsey, R. M., Dacke, C. G., Horner, J. R. & Lamm, E.-T. Do egg-laying crocodilian (Alligator mississippiensis) archosaurs form medullary bone? Bone 40, 1152-1158 (2007).
- 2. Kyes, P.& Potter,T.S. Physiological marrow ossification in female pigeons. Anat.Rec.60, 377-379 (1934).
- 3. Bloom, M. A., Domm, L.V., Nalbandov, A. V. & Bloom, W.Medullary bone of laying chickens.Am.J.Anat.102, 411-452 (1958).
- 4. Simkiss, K. Calcium metabolism and avian reproduction.Biol. Rev.36, 321-367 (1961).
- 5. Schweitzer, M.H., Wittmeyer, J.L.& Horner, J.R.Gender-specific reproductive tissue in ratites and Tyrannosaurus rex. Science 308, 1456-1460 (2005).
- 6. Pahl, R., Winkler, D. W., Graveland, J.& Batterman, B. W.Songbirds do not create long-term stores of calcium in their legs prior to laying:results from high-resolution radiography.Proceedings of the Royal Society, Series B 264, 239-244 (1997).
- 7. Whitehead,C.C.Overview of Bone Biology in the Egg-Laying Hen.Poult.Sci. 83, 193-199 (2004).
- 8. Sugiyama, T.& Kusuhara, S.Avian calcium metabolism and bone function. Asian-Austral. J.An.Sci. 14, 82-90 (2001).
- 9. Fleming, R. H., McCormack, H. A., McTeir, L. & Whitehead, C. C. Medullary bone and humeral breaking strength in laying hens. Res.Vet. Sci.64, 63-67 (1998).
- 10. Dacke, C. G. et al.Medullary Bone and Avian Calcium Regulation. J.Exp. Biol. 184, 63-88 (1993).
- 11. Dacke, C. G., Sugiyama, T. & Gay, C. V. In Sturkie's Avian Physiology, 6th Edition (ed Scanes, C. G.) Ch. 25, 549-575 (Academic Press/Elsevier, 2014).
- 12. Van de Velde, J. P., Vermeiden, J. P.W. & Bloot, A. M. Medullary bone matrix formation, mineralization,and remodeling related to the daily egg-laying cycle of Japanese quail:a histological and radiological study. Bone 6, 321-327 (1985).
- 13. Miller, S. C. & Bowman, B. M.Medullary bone osteogenesis following estrogen administration to mature male Japanese quail.Dev. Biol. 87, 52-63 (1981).
- 14. Ohashi, T., Kusuhara, S. & Ishida, K. Estrogen target cells during the early stage of medullary bone osteogenesis: Immunohisto chemical detection of estrogen receptors in osteogenic cells of estrogen-treated male Japanese quail.Calcif.Tissue Int.49, 124-127 (1991).
- 15. Elsey, R. M. & Wink, C. S. The effects of estradiol on plasma calcium and femoral bone structure in alligators (Alligator mississippiensis). Comp. Biochem. Physiol. 84A, 107-110 (1986).
- 16. Wink, C.S.& Elsey,R. M. Changes in femoral morphology during egg-laying in Alligator mississippiensis. J.Morphol.189, 183-188 (1986).
- 17. Knott, L. & Bailey, A. J.Collagen biochemistry of avian bone: comparison of bone type and skeletal site. Br.Poult. Sci. 40, 371-379 (1999).
- 18. Reynolds, S. J. Mineral retention, medullary bone formation, and reproduction in the white-tailed ptarmigan (Lagopus Leucurus): A critique of Larison et al.(2001). The Auk 120, 224-228 (2003).
- 19. Taylor, T.G. & Moore, J. H.Avian medullary bone. Nature 172 (1953).
- 20. Schraer, H. & Hunter, S. J. The development of medullary bone: A model for osteogenesis. Comp. Biochem. Physiol. 82A, 13-17 (1985).
- 21. Smith, N. A. & Clarke, J. A. Osteological Histology of the Pan-Alcidae (Aves, Charadriiformes): Correlates of Wing-Propelled Diving and Flightlessness. Anat.Rec.297, 188-199 (2014).
- 22. Yamamoto, T., Nakamura, H., Tsuji, T. & Hirata, A. Ultracytochemical Study of Medullary Bone Calcification in Estrogen Injected Male Japanese Quail.Anat. Rec.264, 25-31 (2001).
- 23. Chinsamy, A. B. & Paul M. Sex and old bones? J.Vert. Paleontol. 17, 450-450 (1997).
- 24. Martill, D. M., Barker, M. J. & Dacke, C. G.Dinosaur nesting or preying? Nature 379, 778 (1996).
- 25. Lentaker, A. & van Neer, W. Bird remains from two sites on the Red Sea coast and some observation on medullary bone. Int. J. Osteoarch. 6, 488-496 (1996).
- 26. Van Neer,W.,Noyen,K.& De Cupere, B.On the use of endosteal layers and medullary bone from domestic fowl in archaeozoological studies.J.Archaeol.Sci. 29, 123-134 (2002).
- 27. Chinsamy, A., Chiappe, L. M., Marugan-Lobon, J., Chunling, G. & Fengjiao, Z. Gender identification of the Mesozoic bird Confuciusornis sanctus. Nat. Comm. 4, 1-5, doi:10.1038/ncomms2377 (2013).
- 28. Lee,A. H. & Werning, S.Sexual maturity in growing dinosaurs does not fit reptilian growth models.Proc. Natl.Acad.Sci.USA 105, 582-587 (2008).
- 29. Hubner,T.R.Bone Histology in Dysalotosaurus lettowvorbecki (Ornithischia:Iguanodontia)-Variation, Growth, and Implications. PLoS One 7, e29958 (2012).
- 30. Brusatte, S. L.et al. The origin and early radiation of dinosaurs. Earth-Sci.Rev.101, 68-100 (2010).
- 31. Chinsamy, A. & Tumarkin-Deratzian, A. Pathologic bone tissues in a turkey vulture and a nonavian dinosaur: Implications for interpreting endosteal bone and radial fibrolamellar bone in fossil dinosaurs.Anat. Rec.292, 1478-1484 (2009).
- 32. De Ricqles, A. In A Cold Look at the Warm Blooded Dinosaurs Vol. AAS Selected Sympos. no. 28 (eds Thomas, R.D. K. & Olson, E. C. ) 103-139 (Westview Press, 1980).
- 33. Ohashi, T., Kusuhara, S. & Ishida, K. Immunoelectron microscopic demonstration of estrogen receptors in osteogenic cells of Japanese quail.Histochemistry 96, 41-44 (1991).
- 34. Turner, R. T., Bell, N. H. & Gay, C. V. Evidence that estrogen binding sites are present in bone cells and mediate medullary bone formation in Japanese quail Poult. Sci.72, 728-740 (1993).
- 35. Yamamoto, T. et al. Ultrastructrual and immunohistochemical studies of medullary bone calcification, with special reference to sulphated glycosaminoglycans. J.Electron Microsc.(Tokyo) 54, 29-34, doi: 10.1093/jmicro/dffi097 (2005).
- 36. Fisher, L.W.& Schraer, H.Keratan sulfate proteoglycan isolated from the estrogen-induced medullary bone in Japanese quail.Comp. Biochem.Physiol. 72B, 227-232 (1982).
- 37. Wang,X., Ford, B.C., Praul, C.A.& Leach,R.M.J.Characterization of the non-collagenous proteins in avian cortical and medullary bone.Comp.Biochem.Physiol. B: Biochem.Mol.Biol. 140, 665-672 (2005).
- 38. Schmidt, E. V., Crapo, J. D., Harrelson, J. M. & Smith, R. E. A quantitative histological study of avian osteopetrotic bone demonstrating normal osteoclast numbers and increased osteoblastic activity. Lab. Invest. 44, 164-173 (1981).
- 39. Banes, A.J. & Smith, R. E. Biological characterization of avian osteopetrosis. Infect. Immun. 16, 876-884 (1977).
- 40. de Margerie,E., Cubo, J. & Castanet, J.Bone typology and growth rate: testing and quantifying 'Amprino's rule' in the mallard (Anas platyrhynchos). C. R. Biologies 325, 221-230 (2002).
- 41. Barbosa, T., Ramirez, M., Hafner,S., Cheng,S.& Zavala, G.Forensic investigation of a 1986 outbreak of osteopetrosis in commercial brown layers reveals a novel avian leukosis virus-related genome.Avian Dis.54, 981-989 (2010).
- 42. Simpson, C. F.& Sanger, V.L. A review of avian osteopetrosis:Comparisons with other bone diseases. . Clin. Orthop. Relat. Res. 58, 271-281 (1968).
- 43. Schweitzer, M.H. Soft tissue preservation in terrestrial Mesozoic vertebrates.Annu. Rev. Earth Planet.Sci.39, 187-216, doi:10.1146/ annurev-earth-040610-133502 (2011).
- 44. Schweitzer, M.H. et al. Analyses of soft tissue from Tyrannosaurus rex suggest the presence of protein.Science 316, 277-280 (2007).
- 45. Avci, R.et al. Preservation of bone collagen from the late cretaceous period studied by immunological techniques and atomic force microscopy.Langmuir 21, 3584-3590 (2005).
- 46. Schweitzer, M. H., Zheng, W., Cleland, T. P. & Bern, M. Molecular analyses of dinosaur osteocytes support the presence of endogenous molecules.Bone 52, 414-423 (2013).
- 47. Asara, J. M., Schweitzer, M. H., Phillips, M. P., Freimark, L. M. & Cantley, L. C. Protein sequences from mastodon (Mammut americanum) and dinosaur (Tyrannosaurus rex) revealed by mass spectrometry.Science 316, 280-285 (2007).
- 48. Organ, C. L. et al.Molecular phylogenetics of mastodon and Tyrannosaurus rex. Science 320, 499 (2008).
- 49. Schweitzer, M. H. et al. Biomolecular characterization and protein sequences of the Campanian hadrosaur Brachylophosaurus canadensis. Science 324, 626-629 (2009).
- 50. San Antonio, J. D. et al. Dinosaur peptides suggest mechanisms of protein survival. PLoS One 6, e20381, doi: 10.1371/journal. pone.0020381 (2011).
- 51. Cleland, T. P.et al.Mass spectrometry and antibody-based characterization of blood vessels from Brachylophosaurus canadensis. J. Proteome Res. 14, 5252-5262, doi:10.1021/acs.jproteome.5b00675 (2015).
- 52. Prondvai, E. & Stein, K. H. W. Medullary bone-like tissue in the mandibular symphyses of a pterosaur suggests non-reproductive significance.Sci. Rep. 4, doi: 10.1038/srep06253 (2014).