Published June 10, 2020 | Version v2020.06.10
Dataset Open

Dataset for "Helicity proxies from linear polarisation of solar active regions"

  • 1. Max Planck Institute for Solar System Research
  • 2. NORDITA, KTH Royal Institute of Technology and Stockholm University
  • 3. Department of Computer Science, Aalto University

Description

The \(\alpha\) effect is believed to play a key role in the generation of the solar magnetic field. A fundamental test for its significance in the solar dynamo is to look for magnetic helicity of opposite signs in the two hemispheres, and at small and large scales. However, measuring magnetic helicity is compromised by the inability to fully infer the magnetic field vector from observations of solar spectra, caused by what is known as the \(\pi\) ambiguity of spectropolarimetric observations. We decompose linear polarisation into parity-even and parity-odd E and B polarisations, which are not affected by the \(\pi \) ambiguity. Furthermore, we study whether the correlations of spatial Fourier spectra of B and parity-even quantities such as or temperature T are a robust proxy for magnetic helicity of solar magnetic fields.  We analyse polarisation measurements of active regions observed by the Helioseismic and Magnetic Imager on board the Solar Dynamics observatory. Theory predicts the magnetic helicity of active regions to have, statistically, opposite signs in the two hemispheres. We then compute the parity-odd EB and TB correlations, and test for systematic preference of their sign based on the hemisphere of the active regions. We find that: (i) EB and TB correlations are a reliable proxy for magnetic helicity, when computed from linear polarisation measurements away from spectral line cores, and (ii) E polarisation reverses its sign close to the line core. Our analysis reveals Faraday rotation to not have a significant influence on the computed parity-odd correlations. The EB decomposition of linear polarisation appears to be a good proxy for magnetic helicity independent of the \(\pi\) ambiguity. This allows us to routinely infer magnetic helicity directly from polarisation measurements.

The full article can be found at https://arxiv.org/abs/2001.10884

Notes

The active regions are separated by hemisphere, and their data is stored in separate subfolders identified by the NOAA numbers of the active region. Detailed instructions on the data can be found in the README.txt

Files

north_hemis_data.zip

Files (255.7 MB)

Name Size Download all
md5:39c00b9a3a10a71445d83d832fe04fce
130.7 MB Preview Download
md5:9fdb547b913829a1ae82d210f3dff351
1.2 kB Preview Download
md5:811e62cab7a1d289b49a19513f132105
125.0 MB Preview Download

Additional details

Related works

Is cited by
Journal article: arXiv:2001.10884 (arXiv)

Funding

European Commission
UniSDyn – Building up a Unified Theory of Stellar Dynamos 818665