Published September 10, 2019 | Version v1
Journal article Open

Unexpected species diversity in electric eels with a description of the strongest living bioelectricity generator

Description

de Santana, C. David, Crampton, William G. R., Dillman, Casey B., Frederico, Renata G., Sabaj, Mark H., Covain, Raphaël, Ready, Jonathan, Zuanon, Jansen, de Oliveira, Renildo R., Mendes-Júnior, Raimundo N., Bastos, Douglas A., Teixeira, Tulio F., Mol, Jan, Ohara, Willian, Castro, Natália Castro e, Peixoto, Luiz A., Nagamachi, Cleusa, Sousa, Leandro, Montag, Luciano F. A., Ribeiro, Frank, Waddell, Joseph C., Piorsky, Nivaldo M., Vari, Richard P., Wosiacki, Wolmar B. (2019): Unexpected species diversity in electric eels with a description of the strongest living bioelectricity generator. Nature Communications 10 (4000): 1-10, DOI: 10.1038/s41467-019-11690-z, URL: http://dx.doi.org/10.1038/s41467-019-11690-z

Files

source.pdf

Files (3.9 MB)

Name Size Download all
md5:700e5964ceab3ef7f77ae241c36712e1
3.9 MB Preview Download

Linked records

Additional details

Identifiers

LSID
urn:lsid:plazi.org:pub:700E5964FFABFFF7F77AE241C367FFE1
URL
http://publication.plazi.org/id/700E5964FFABFFF7F77AE241C367FFE1

References

  • 1. Linnaeus, C. Systema naturae per regna tria naturae, secundum classes, ordines, genera, species, cum characteribus, differentiis, synonymis, locis. Laurentii Salvii, Holmiae. 12th ed. v. 1 (pt 1): 1-532 (1766).
  • 2. Finger, S. & Piccolino, M. The Shocking History of Electric Fishes: From Ancient Epochs to the Birth of Modern Neurophysiology. (Oxford Univ. Press, Oxford, 2011).
  • 3. Encyclopedia Britannica, The Encyclopedia Britannica Publishing Co, 11th Edn. vol. 7 (1910).
  • 4. Catania, K. The shocking predatory strike of the electric eel. Science 346, 1231-1234 (2014).
  • 5. Tonelli, M. et al. Multitarget Therapeutic Leads for Alzheimer' s Disease: Quinolizidinyl Derivatives of Bi- and Tricyclic Systems as Dual Inhibitors of Cholinesterases and β- Amyloid (Aβ) Aggregation. ChemMedChem. 10, 1040-1053 (2015).
  • 6. Xu, J., Vanderlick, T. K. & LaVan, D. A. Energy conversion in protocells with natural nanoconductors. Int. J. Photoenergy 2012, 1-10 (2012).
  • 7. Sun, H., Fu, X., Xie, S., Jiang, Y. & Peng, H. Electrochemical capacitors with high output voltages that mimic electric eels. Adv. Mater. 28, 2070-2076 (2016).
  • 8. Schroeder, T. B. H. et al. An electric-eel-inspired soft power source from stacked hydrogels. Nature 552, 214-218 (2017).
  • 9. Gallant, J. R. et al. Genomic basis for the convergent evolution of electric organs. Science 344, 1522-1525 (2014).
  • 10. Coates, C. W. & Cox, R. T. A comparison of length and voltage in the electric eel, Electrophorus electricus (Linnaeus). Zoologica 30, 89-93 (1945).
  • 11. Mago-Leccia, F. Electric fishes of the continental waters of America. Classification and catalogue of the electric fishes of the order Gymnotiformes (Teleostei: Ostariophysi) with descriptions of new genera and species (Biblioteca de la academia de ciencias fisicas, matematics y naturales, Caracas, 1994).
  • 12. Crampton, W. G. R. An ecological perspective on diversity and evolution in Historical biogeography of Neotropical freshwater fishes pp. 165-189. (University of California Press, Berkeley, 2011).
  • 13. Ferraris, C. J., de Santana, C. D. & Vari, R. P. Checklist of Gymnotiformes (Osteichthyes: Ostariophysi) and catalogue of primary types. Neotrop. Ichthyol. 15, e16006 (2017).
  • 14. de Queiroz, K. Endless Forms: Species and Speciation pp. 57-75. (Oxford University Press, New York, 1998).
  • 15. Hebert, P. D. N., Ratnasingham, S. & deWaard, J. R. Barcoding animal life: cytochrome c oxidase subunit 1 divergences among closely related species. Proc. R. Soc. London 270, 96-99 (2003).
  • 16. Puillandre, N., lambert, A., Brouillet, S. & Achaz, G. ABGD, Automatic Barcode Gap Discovery for primary species delimitation. Mol. Ecol. 8, 1864-1877 (2012).
  • 17. Yang, Z. The BPP program for species tree estimation and species delimitation. Curr. Zool. 61, 854-865 (2015).
  • 18. Bouckaert, R. et al. BEAST 2: a software platform for bayesian evolutionary analysis. PLoS Comput. Biol. 10, e1003537 (2014).
  • 19. Tagliacollo, V. A., Bernt, M. J., Craig, J. M., Oliveira, C. & Albert, J. S. Modelbased total evidence phylogeny of Neotropical electric knifefishes (Teleostei, Gymnotiformes). Mol. Biol. Evol. 95, 20-33 (2016).
  • 20. Osborne, A. H. et al. The seawater neodymium and lead isotope record of the final stages of Central American Seaway closure. Paleoceanography 29, 715-729 (2014).
  • Albert, J. S. Phylogeny, biogeography, and electric signal evolution of Neotropical knifefishes of the genus Gymnotus(Osteichthyes: Gymnotidae). Mol. Phylogenet. Evol. 54, 278-290 (2010).
  • 22. Drummond, A. J., Ho., S. Y. W., Phillips, M. J. & Rambaut, A. Relaxed phylogenetics and dating with confidence. PLoS Biol. 4, e88 (2006).
  • 23. Brown, R. P. & Yang, Z. Rate variation and estimation of divergence times using strict and relaxed clocks. BMC Evo. Biol. 11, 271 (2011).
  • 24. Lujan, N. K. & Conway, K. W. Life in the Fast Lane: A Review of Rheophily in Freshwater Fishes in Extremophile fishes pp. 107-136. (Springer International Publishing, Switzerland, 2015).
  • 25. Lima, F. C. T. & Ribeiro, C. R. Continental-scale tectonic controls of biogeography and ecology] in Historical biogeography of Neotropical freshwater fishes pp. 145-164. (University of California Press, Berkeley, 2011).
  • 26. Hoorn, C. et al. The Amazon at sea: onset and stages of the Amazon River from a marine record, with special reference to Neogene plant turnover in the drainage basin. Global Planet. Change 153, 51-65 (2017).
  • 27. Figueiredo, J., Hoorn, C., Van der Ven, P. & Soares, E. Late Miocene onset of the Amazon River and the Amazon deep-sea fan: evidence from the Foz do Amazonas Basin. Geology 37, 619-622 (2009).
  • 28. Campbell, K. E. Late Miocene onset of the Amazon River and the Amazon deepsea fan: evidence from the Foz do Amazonas Basin: Comment. Geology 38, e213 (2010).
  • 29. Crampton, W. G. R. & Albert, J. S. Evolution of electric signal diversity in gymnotiform fishes] in Communication in fishes pp. 647-731. (Science Publishers, Enfield, NH, 2006).
  • 30. Crampton, W. G. R., Davis, J. K., Lovejoy, N. R. & Pensky, M. Multivariate classification of animal communication signals: a simulation-based comparison of alternative signal processing procedures using electric fishes. Journal of Physiology-Paris 102, 304-321 (2008).
  • 31. Crampton, W. G. R. Electroreception, electrogenesis and signal evolution in freshwater fish. J. Fish Biol. 95, 92-134 (2019).
  • 32. Crampton, W. G. R., Lovejoy, N. R. & Waddell, J. C. Reproductive character displacement and signal ontogeny in a sympatric assemblage of electric fish. Evolution 65, 1650-1666 (2011).
  • 33. Gill, T. N. Several points in ichthyology and conchology. Proc. Acad. Natl Sci. Phila. 16, 151-152 (1864).
  • 34. Gronovius, L. T. Zoophylacii Gronoviani fasciculus primus exhibens animalia quadrupeda, amphibia atque pisces, quae in museo suo adservat, rite examinavit, systematice disposuit, descripsit atque iconibus illustravit Laur. Zoophylacii Gronoviani. 1-136, pls. 1-13 (1763).
  • 35. Houttuyn, M. Natuurlyke historie of uitvoerige beschryving der dieren, planten en mineraalen, volgens het samenstel van den Heer Linnaeus. (Met naauwkeurige afbeeldingen, Amsterdam, 1764).
  • 36. Chiaje, S. D. Notizia su due Gimnoti elettrici dall' America recati vivi in Napolli. Nuov. Ann. Sci. Nat. Bologna 8, 268-273 (1847).
  • 37. Stoddard, P. K. Predation enhances complexity in the evolution of electric fish signals. Nature 400, 254-256 (1999).
  • 38. Pitchers, W. R., Constantinou, S. J., Lossila, M. & Gallant, J. R. Electric fish genomics: progress, prospects, and new tools for neuroethology. J. Physiol. (Paris) 110, 259-272 (2016).
  • 39. Albert, J. S. et al. The case for sequencing the genome of the electric eel Electrophorus electricus. J. Fish Biol. 72, 331-354 (2008).
  • 40. Tamura, K., Stecher, G., Peterson, D., Filipski, A. & Kumar, S. MEGA6: molecular evolutionary genetics analysis version 6.0. Mol. Biol. Evo. 30, 2725-2729 (2013).
  • 41. Posada, B. jModelTest: phylogenetic model averaging. Mol. Biol. Evo. 25, 1253-1256 (2008).
  • 42. Young, N. D. & Healy, J. GapCoder automates the use of indel characters in phylogenetic analysis. BMC Bioinformatics 4, 6 (2003).
  • 43. Hanner, R., Desalle, R., Ward, R. D., Hebert, P. D. & Kolokotronis, S.-O. The Fish Barcode of Life (FISH-BOL) special issue. Mitochondrial DNA 22, 1-2 (2011).
  • 44. Meyer, C. P. & Paulay, G. DNA Barcoding: error rates based on comprehensive sampling. PLoS Biol. 3, e422 (2005).
  • 45. Pons, J. et al. Sequence-based species delimitation for the DNA taxonomy of undescribed insects. Syst. Biol. 55, 595-609 (2006).
  • 46. Monaghan, M. T. et al. Accelerated species inventory on Madagascar using coalescent-based models of species delineation. Syst. Biol. 58, 298-311 (2009).
  • 47. Reid, N. M. & Carstens, B. C. Phylogenetic estimation error can decrease the accuracy of species delimitation: a Bayesian implementation of the general mixed Yule-coalescent model. BMC Evo. Biol. 12, 196 (2012).
  • 48. Zhang, J., Nielsen, R. & Yang, Z. Evaluation of an improved branch-site likelihood method for detecting positive selection at the molecular level. Mol. Biol. Evol. 22, 2472-2479 (2005).
  • 49. Cummings, M. P., Neel, M. C. & Shaw, K. L. A genealogical approach to quantifying lineage divergence. Evolution 62, 2411-2422 (2008).
  • 50. Bazinet A. L. & Cummings, M. P. Distributed & Grid Computing- Science Made Transparent for Everyone. Principles, Applications and Supporting Communities. (Rechenkraft.net, Marburg, 2008).
  • 51. Ronquist, F. et al. MrBayes 3.2: efficient bayesian phylogenetic inference and model choice across a large model space. Syst. Biol. 61, 539-542 (2012).
  • 52. Miller, M. A. et al. A RESTful API for access to phylogenetic tools via the CIPRES science gateway. Evol. Bioinfo. 11, 43-48 (2015).
  • 53. Bouckaert, R. R. DensiTree: making sense of sets of phylogenetic trees. Bioinformatics 26, 1372-1373 (2010).
  • 54. Smith, S. A. & Dunn, C. W. Phyutility: a phyloinformatics tool for trees, alignments and molecular data. Bioinformatics 24, 715-716 (2008).
  • 55. Yang, Z. & Rannala, B. Unguided species delimitation using DNA sequence data from multiple loci. Mol. Biol. Evol. 12, 3125-3135 (2014).
  • 56. Yang, Z. & Rannala, B. Bayesian species delimitation using multilocus sequence data. Proc. Natl Acad. Sci. USA 107, 9264-9269 (2010).
  • 57. Bacon, C. D. et al. Biological evidence supports an early and complex emergence of the Isthmus of Panama. Proc. Natl. Acad. Sci. U.S.A. 112, 6110-6115 (2015).
  • 58. Bacon, C. D. et al. Reply to Lessios and Marko et al.: early and progressive migration across the Isthmus of Panama is robust to missing data and biases. PNAS 112, E5767-E5768 (2015).
  • 59. Lessios, H. A. Appearance of an early closure of the Isthmus of Panama is the product of biased inclusion of data in the metaanalysis. PNAS 112, E5765 (2015).
  • 60. Marko, P. B., Eytan, R. I. & Knowlton, N. Do large molecular sequence divergences imply an early closure of the Isthmus of Panama? PNAS 112, E5766 (2015).
  • 61. Montes, C. et al. Middle Miocene closure of the Central American Seaway. Science 348, 226-229 (2015).
  • 62. O' Dea, A. et al. Formation of the Isthmus of Panama. Sci. Adv. 2, e1600883 (2016).
  • 63. Molnar, P. Comment (2) on "Formation of the Isthmus of Panama" by O' Dea et al. Sci. Adv. 3, e1602320 (2017).
  • 64. Jaramillo, C. et al. Comment (1) on "Formation of the Isthmus of Panama" by O' Dea et al. Science Adv. 3, e1602321 (2017).
  • 65. Sepulchre, P. et al. Consequences of shoaling of the Central American Seaway determined from modeling Nd isotypes. Paleoceanography 29, 176-189 (2014).
  • 66. Dillman, C. B., Bergstrom, D. E., Noltie, D. B., Holtsford, T. P. & Mayden, R. L. Regressive progression, progressive regression or neither? Phylogeny and evolution of the Percopsiformes (Teleostei, Paracanthopterygii). Zool. Scripta 40, 45-60 (2011).
  • 67. Soberon, J. Grinnellian and Eltonian niches and geographic distributions of species. Ecol. Lett. 10, 1-9 (2007).
  • 68. Phillips, S. J., Anderson, R. P. & Schapire, R. E. Maximum entropy modeling of species geographic distributions. Ecol. Model. 190, 231-259 (2006).
  • 69. Phillips, S. J. & Dudik, M. Modeling of species distributions with Maxent: new extensions and a comprehensive evaluation. Ecography 31, 161-175 (2008).
  • 70. Frederico, R. G., De Marco, P. & Zuanon, J. Evaluating the use of macroscale variables as proxies for local aquatic variables and to model stream fish distributions. Freshw. Biol. 59, 2303-2314 (2014).
  • 71. Merow, C., Smith, M. J. & Silander, J. A. Jr. A practical guide to MaxEnt for modeling species' distributions: what it does, and why inputs and settings matter. Ecography 36, 1058-1069 (2013).
  • 72. Fielding, A. H. & Bell, J. F. Review of methods for the assessment of prediction errors in conservation presence/absence models. Environ. Conserv. 24, 38-49 (1997).
  • 73. Jimenez-Valverde, A. & Lobo, J. M. Threshold criteria for conversion of probability of species presence to either- or presence- absence. Acta Oecol. 31, 361-369 (2007).
  • 74. R Development Core Team. R: A language and environment for statistical computing. (R Foundation for Statistical Computing, Vienna 2012).
  • 75. Crampton, W. G. R., Rodriguez-Cattaneo, A., Lovejoy, N. R. & Caputi, A. A. Proximate and ultimate causes of signal diversity in the electric fish Gymnotus. J. Exp. Biol. 216, 2523-2541 (2013).
  • 76. Mallat, S. A wavelet tour of signal processing. (Academic Press, San Diego, 1999).