Published December 31, 2022 | Version v1
Journal article Open

The effects of Contracaecum osculatum larvae on the growth of Atlantic cod (Gadus morhua)

  • 1. Swedish University of Agricultural Research, Institute of Marine Research, Turistgatan 5, 453 30, Lysekil, Sweden
  • 2. Swedish University of Agricultural Research, Institute of Coastal Research, Skolgatan 6, 742 42, Oregrund¨, Sweden

Description

Ovegård, Maria, Ljungberg, Peter, Orio, Alessandro, Ohman, Kristin, Norrman, Emilia Benavente, Lunneryd, Sven-Gunnar (2022): The effects of Contracaecum osculatum larvae on the growth of Atlantic cod (Gadus morhua). International Journal for Parasitology: Parasites and Wildlife 19: 161-168, DOI: 10.1016/j.ijppaw.2022.08.006, URL: http://dx.doi.org/10.1016/j.ijppaw.2022.08.006

Files

source.pdf

Files (3.0 MB)

Name Size Download all
md5:a1e867febbeafd2b4cba8917765e1621
3.0 MB Preview Download

Linked records

Additional details

Identifiers

LSID
urn:lsid:plazi.org:pub:FFE8FFFEFFEAFD2BFFBA8917765E1621

References

  • Altschul, S.F., Gish, W., Miller, W., Myers, E.W., Lipman, D.J., 1990. Basic local alignment search tool. J. Mol. Biol. 215 (3), 403-410.
  • Ask, L., Sved¨ang, H., 2019. En N¨aring I Nationens Tj¨anst - Utveckling Av Fisket Och Fiskeriforvaltningen ¨I Sverige (An Industry at the Nation' s Service - Development of Fishing and Fisheries Management in Sweden). Havsmilj¨oinstitutet, Goteborg ¨(in Swedish).
  • Bryhn, A., Bergek, S., Bergstr¨om, U., Casini, M., Dahlgren, E., Ek, C., Hjelm, J., K¨onigson, S., Ljungberg, P., Lundstr¨om, K., Lunneryd, S.G., Ovegard, M., Sk¨old, M., Valentinsson, D., Vitale, F., Wennhage, H., 2022. Which factors can affect the productivity and dynamics of cod stocks in the Baltic Sea, Kattegat and Skagerrak? Ocean Coast Manag. 223 https://doi.org/10.1016/j.ocecoaman.2022.106154.
  • Casini, M., K¨all, F., Hansson, M., Plikshs, M., Baranova, T., Karlsson, O., Lundstrom ¨, K., Neuenfeldt, S., Gardmark, A., Hjelm, J., 2016. Hypoxic areas, density-dependence and food limitation drive the body condition of a heavily exploited marine fish predator. R. Soc. Open Sci. 3.
  • Eero, M., Hjelm, J., Behrens, J., Buchmann, K., Cardinale, M., Casini, M., Gasyukov, P., Holmgren, N., Horbowy, J., Hussy, K., Kirkegaard, E., Kornilovs, G., Krumme, U., Koster, F.W., Oeberst, R., Plikshs, M., Radtke, K., Raid, T., Schmidt, J., Tomczak, M. T., Vinther, M., Zimmermann, C., Storr-Paulsen, M., 2015. Food for Thought Eastern Baltic cod in distress: biological changes and challenges for stock assessment. ICES J. Mar. Sci. 72, 2180-2186.
  • Eero, M., Vinther, M., Haslob, H., Huwer, B., Casini, M., Storr-Paulsen, M., K¨oster, F.W., 2012. Spatial management of marine resources can enhance the recovery of predators and avoid local depletion of forage fish. Conserv. Lett. 5, 486-492.
  • Galatius, A., Teilmann, J., D¨ahne, M., Ahola, M., Westphal, L., Kyhn, L.A., Pawliczka, I., Olsen, M.T., Dietz, R., 2020. Grey seal (Halichoerus grypus) recolonisation of the southern Baltic Sea, Danish straits and Kattegat. Wildl. Biol. 2020.
  • Guderley, H., Lapointe, D., B´edard, M., Dutil, J.-D., 2003. Metabolic priorities during starvation: enzyme sparing in liver and white muscle of Atlantic cod, Gadus morhua L. Comp. Biochem. Physiol. Mol. Integr. Physiol. 135, 347-356.
  • Haarder, S., Kania, P.W., Galatius, A., Buchmann, K., 2014. Increased Contracaecum osculatum infection in Baltic cod (Gadus morhua) livers (1982-2012) associated with increasing Grey seal (Halichoerus gryphus) populations. J. Wildl. Dis. 50, 537-543.
  • Hemmingsen, W., Lysne, D.A., Eidnes, T., Skorping, A., 1993. The occurrence of larval ascaridoid nematodes in wild-caught and in caged and artificially fed Atlantic cod, Gadus morhua L., in Norwegian waters. Fish. Res. 15, 379-386.
  • Horbowy, J., Podolska, M., Nadolna-Altyn, K., 2016. Increasing occurrence of anisakid nematodes in the liver of cod (Gadus morhua) from the Baltic Sea: does infection affect the condition and mortality of fish? Fish. Res. 179, 98-103.
  • Hussy, K., 2010. Why is age determination of Baltic cod (Gadus morhua) so difficult? ICES (Int. Counc. Explor. Sea) J. Mar. Sci. 67, 1198-1205.
  • Hussy, K., Eero, M., Radtke, K., 2018. Faster or slower: has growth of eastern Baltic cod changed? Mar. Biol. Res. 14, 598-609.
  • ICES, 2021. ICES Working Group on Baltic International Fish Survey (WGBIFS; outputs from 2020 meeting). ICES Scientific Reports 3 (02), 1-539. https://doi.org/ 10.17895/ices.pub.7679.
  • Koie, M., Fagerholm, H.P., 1995. The life cycle of Contracaecum osculatum (Rudolphi, 1802) sensu stricto (Nematoda, Ascaridoidea, Anisakidae) in view of experimental infections. Parasitol. Res. 81, 481-489. https://doi.org/10.1007/BF00931790.
  • Lambert, Y., Dutil, J.-D., 1997. Condition and energy reserves of Atlantic cod (Gadus morhua) during the collapse of the northern Gulf of St. Lawrence stock. Can. J. Fish. Aquat. Sci. 54, 2388-2400.
  • Lunneryd, S.G., Ljungberg, P., Ohman ¨, K., Ovegard, M., 2022. Mata mager torsk till en fin produkt - en r¨addning for ¨kustfisket? Aqua Reports 5, 23.
  • Marnis, H., Kania, P.W., Syahputra, K., Zuo, S.Z., Dirks, R.P., Buchmann, K., 2019. Transcriptomic analysis of Baltic cod (Gadus morhua) liver infected with Contracaecum osculatum third stage larvae indicates parasitic effects on growth and immune response. Fish Shellfish Immunol. 93, 965-976.
  • Marteinsdottir, G., Begg, G.A., 2002. Essential relationships incorporating the influence of age, size and condition on variables required for estimation of reproductive potential in Atlantic cod Gadus morhua. Mar. Ecol. Prog. Ser. 235, 235-256. https:// doi.org/10.3354/meps235235.
  • McElroy, Eric J., de Buron, I., 2014. Host performance as a target of manupulation by parasites: a meta-analysis. J. Parasitol. 100 (4), 399-410. http://www.jstor.org/ stable/24624962.
  • Mehrdana, F., Bahlool, Q.Z.M., Skov, J., Marana, M.H., Sindberg, D., Mundeling, M., Overgaard, B.C., Korbut, R., Strom, S.B., Kania, P.W., Buchmann, K., 2014. Occurrence of zoonotic nematodes Pseudoterranova decipiens, Contracaecum osculatum and Anisakis simplex in cod (Gadus morhua) from the Baltic Sea. Vet. Parasitol. 205, 581-587.
  • Mohamed, A., Zuo, S., Karami, A.M., Marnis, H., Setyawan, A., Mehrdana, F., Kirkeby, C., Kania, P., Buchmann, K., 2020. Contracaecum osculatum (sensu lato) infection of Gadus morhua in the Baltic Sea: inter- and intraspecific interactions. Int. J. Parasitol. 50, 891-898. https://doi.org/10.1016/j.ijpara.2020.06.003.
  • Neuenfeldt, A., Bartolino, V., Orio, A., Andersen, K.H., Andersen, N.G., Niiranen, S., Bergstr¨om, U., Ustups, D., Kulatska, N., Casini, M., 2020. Feeding and growth of Atlantic cod (Gadus morhua L.) in the eastern Baltic Sea under environmental change. ICES (Int. Counc. Explor. Sea) J. Mar. Sci. 77 (2), 624-632. https://doi.org/ 10.1093/icesjms/fsz224.
  • Pedersen, T., Jobling, M., 1989. Growth rates of large, sexually mature cod, Gadus morhua, in relation to condition and temperature during an annual cycle. Aquaculture 81, 161-168.
  • Plambech, M., Van Deurs, M., Steffensen, J.F., Tirsgaard, B., Behrens, J.W., 2013. Excess post-hypoxic oxygen consumption in Atlantic cod Gadus morhua. J. Fish. Biol. 83 (2), 396-403. https://doi.org/10.1111/jfb.12171.
  • R Core Team, 2019. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria. URL. https://www.R-project. org/.
  • Ryberg, M.P., 2021. Eastern Baltic Cod Infected with Contracaecum osculatum: Physiological Mechanisms and the Importance of Monitoring Infection Loads, Marine Living Resources, National Institute of Aquatic Resources. Technical University of Denmark, p. 163.
  • Ryberg, M.P., Skov, P.V., Vendramin, N., Buchmann, K., Nielsen, A., Behrens, J.W., 2020. Physiological condition of Eastern Baltic cod, Gadus morhua, infected with the parasitic nematode Contracaecum osculatum. Conserv. Physiol. 8 coaa093.
  • Setyawan, A.C., Jensen, H.M., Kania, P.W., Buchmann, K., 2020. Baltic cod endohelminths reflect recent ecological changes. J. Helminthol. 94, e155 https:// doi.org/10.1017/S0022149X20000176, 1-6.
  • Silberberger, M.J., Renaud, P.E., Kr¨oncke, I., Reiss, H., 2018. Food-web structure in four locations along the European shelf indicates spatial differences in ecosystem functioning. Front. Mar. Sci. 5.
  • Sokolova, M., Buchmann, K., Huwer, B., Kania, P.W., Krumme, U., Galatius, A., Hemmer- Hansen, J., Behrens, J.W., 2018. Spatial patterns in infection of cod Gadus morhua with the seal-associated liver worm Contracaecum osculatum from the Skagerrak to the central Baltic Sea. Mar. Ecol. Prog. Ser. 606, 105-118. https://doi.org/10.3354/ meps12773.
  • Sved¨ang, H., Hornborg, S., 2014. Selective fishing induces density-dependent growth. Nat. Commun. 5, 4152.
  • TACADAR Final report, 2006. Towards Accrediation and Certification of Age Determination of Aquatic Resources (TACADAR), Q5CA-2002-01891, pp. 1-85.
  • Timi, J.T., Poulin, R., 2020. Why ignoring parasites in fish ecology is a mistake. Int. J. Parasitol. ISSN: 0020-7519 50 (10-11), 755-761. https://doi.org/10.1016/j. ijpara.2020.04.007.
  • Wasikowska, B., Sobecka, E., Bielat, I., Legierko, M., Wiecaszek, B., 2018. A novel method for predicting anisakid nematode infection of Atlantic cod using rough set theory. J. Food Protect. 81, 502-508.
  • Wood, S.N., 2006. Generalized Additive Models: an Introduction with R. Chapman and Hall, Boca Raton, FL. https://doi.org/10.1201/9781420010404.
  • Wood, S., Scheipl, F., 2020. gamm4: Generalized Additive Mixed Models using 'mgcv' and 'lme4'. R package version 0.2-6. https://CRAN.R-project.org/package=gamm4.
  • Zuo, S., Kania, P.W., Mehrdana, F., Marana, M.H., Buchmann, K., 2018. Contracaecum osculatum and other anisakid nematodes in grey seals and cod in the Baltic Sea: molecular and ecological links. J. Helminthol. 92, 81-89.
  • Zuur, A.F., Ieno, E.N., Walker, N.J., Saveliev, A.A., Smith, G.M., 2009. Mixed Effects Models and Extensions in Ecology with R. Springer, New York.