Published December 31, 2023 | Version v1
Journal article Open

Covariation In Shapes Between The Sternum And Pelvis In Aquatic Birds With Different Locomotor Modes

  • 1. E-mail: shatkovskayaoksana@gmail.com
  • 2. E-mail: ghazali.maria@gmail.com

Description

Shatkovska, O. V., Ghazali, M. (2023): Covariation In Shapes Between The Sternum And Pelvis In Aquatic Birds With Different Locomotor Modes. Zoodiversity 57 (3): 251-266, DOI: 10.15407/zoo2023.03.251, URL: http://dx.doi.org/10.15407/zoo2023.03.251

Files

source.pdf

Files (1.7 MB)

Name Size Download all
md5:910eabd06fea5a1a39c3d5d109bb9b49
1.7 MB Preview Download

Linked records

Additional details

Identifiers

LSID
urn:lsid:plazi.org:pub:910EFFD0FFEA5A1AFFC3FFD1FFBB9B49

References

  • Adams, D. C., Collyer, M. L. & Kaliontzopoulou, A. 2019. Geomorph: Software for geometric morphometric analyses. R package version 3.1.0. https://cran.r-project.org/package=geomorph
  • Anten-Houston, M. V., Ruta, M. & Deeming, D. C. 2017. Effects of phylogeny and locomotor style on the allometry of body mass and pelvic dimensions in birds. J. Anat., 231 (3), 342-358. https://doi.org/10.1111/ joa.12647
  • Bogdanovich, I. A. 2003. Morphological aspects of phylogeny of Hesperornithidae (Ornithurae, Aves). Vestnik. Zoologii, 37 (6), 65-71 [In Ukrainian with English summary].
  • Bogdanovich, I. A. 2014. Origin and evolutionary morphological characteristics of terrestrial locomotion apparatus of birds. Vestnik Zoologii, 31, 1-80 [In Russian with English summary].
  • Chang, B., Croson, M., Straker, L., Gart, S., Dove, C., Gerwin, J. & Jung, S. 2016. How seabirds plunge-dive without injuries. Proceedings of the National Academy of Sciences, 113 (43), 12006-12011.
  • Clifton, G. T. & Biewener, A. A. 2018. Foot-propelled swimming kinematics and turning strategies in common loons. Journal of Experimental Biology, 221, jeb168831. doi:10.1242/jeb.168831
  • Dabelow, A. 1925. Die Schwimmanpassung der Vogel. Ein Beitrag zur biologischen Anatomie der Fortbewegung. Morphologisches Jahrbuch, 54, 288-321.
  • Davydenko, S., Mors, T. & Gol'din, P. 2021. A small whale reveals diversity of the Eocene cetacean fauna of Antarctica. Antarctic Science, 33 (1), 81-88. doi:10.1017/S0954102020000516
  • Dzeverin, I. 2020. The skull integration pattern and internal constraints in Myotis myotis-Myotis blythii species group (Vespertilionidae, Chiroptera) might be shaped by natural selection during evolution along the genetic line of least resistance. Evol Biol, 47, 18-42. https://doi.org/10.1007/s11692-019-09488-4
  • Felice, R.N. & O'Connor, P.M. 2014. Ecology and Caudal Skeletal Morphology in Birds: The Convergent Evolution of Pygostyle Shape in Underwater Foraging Taxa. PLoS One, 9 (2): e89737. doi:10.1371/journal. pone.0089737
  • Flint, V. E., Boeme, R. L., Kostin, Y. V. & Kuznetsov, A. A. 1968. Birds of the USSR. Mysl. Moscow, 1-637 [In Russian].
  • Flint, V. E. 1991. Ordo Anseriformes. In: Ilichev, V. D., ed. Fauna of the world: Birds: Handbook. Agropromizdat, Moscow, 60-68 [In Russian].
  • Frank, T. M., Dodson, P. & Hedrick, B. P. 2022. Form and function in the avian pelvis. J Morphol, 283 (6), 875-893. Doi: 10.1002/jmor.21479
  • Fruciano, C. 2019. GeometricMorphometricsMix: Miscellaneous functions useful for geometric morphometrics. R package version 0.0.7.9000.
  • Gatesy, S. M. 1990. Caudofemoral musculature and the evolution of theropod locomotion. Paleobiology, 16, 170-186. DOI: https://doi.org/10.1017/S0094837300009866
  • Ghazali, M., Moratelli, R. & Dzeverin, I. 2017. Ecomorph evolution in Myotis (Vespertilionidae, Chiroptera). J Mammal Evol, 2, 475-484. https://doi.org/10.1007/s10914-016-9351-z
  • Gladkov, N. A. 1949. Biological principles of bird flight. Izdatelstvo MOIP, Moscow, 1-247 [In Russian].
  • Gol'din, P., Startsev, D. & Krakhmalnaya, T. 2013. The anatomy of the Late Miocene baleen whale Cetotherium riabinini from Ukraine. Acta Palaeontologica Polonica 59 (4), 795-814. https://doi.org/10.4202/ app.2012.0107
  • Gol'din, P. 2014. Naming an innominate: pelvis and hindlimbs of Miocene whales give an insight into evolution and homology of cetacean pelvic girdle. Evol Biol, 41, 473-479. https://doi.org/10.1007/s11692-014-9281-8
  • Hammer, O., Harper, D. A. T. & Ryan, P. D. 2001. PAST: paleontological statistics software package for education and data analysis. Palaeontol Electron, 4, 1-9. http://palaeo-electronica.org/2001_1/past/issue1_01. htm
  • Hartman, F. A. 1961. Locomotor mechanisms of birds. Smithson. misc. collect., 143 (1), 1-91.
  • Heath, J. P., Gilchrist, H. G. & Ydenberg, R. C. 2006. Regulation of stroke pattern and swim speed across a range of current velocities: diving by common eiders wintering in polynyas in the Canadian Arctic. J. Exp. Biol., 209, 3974-3983. doi:10.1242/jeb.02482
  • Hertel, F. & Campbell, K. E. 2007. The antitrochanter of birds: form and function in balance. Auk, 124 (3), 789-805. DOI: 10.1093/auk/124.3.789
  • Hinic-Frlog, S. & Motani, R. 2010. Relationship between osteology and aquatic locomotion in birds: determining modes of locomotion in extinct Ornithurae. J. Evol. Biol., 23, 372-385. doi:10.1111/j.1420- 9101.2009.01909.x.
  • Ibanez, B. & Tambussi, C. P. 2012. Foot-propelled aquatic birds: pelvic morphology and locomotor performance. Ital. J. Zool., 79 (3), 356-362. http://dx.doi.org/10.1080/11250003.2011.650713
  • Isakov, Y. A. 1952. Subfamily Anatinae. In: Dement'ev, G. P. & Gladkov, N. A., eds. The birds of the Soviet Union, vol. 4. Sovietskaya Nauka, Moscow, 344-635 [In Russian].
  • Jetz, W. W., Thomas, G. H. G., Joy, J. B. J., Hartmann, K. K. & Mooers, A. O. A. 2012. The global diversity of birds in space and time. Nature, 491, 444-448. https://doi.org/10.1038/nature11631
  • Johansson, L. C. 2002. Swimming in Birds: Propulsive Mechanisms and Functional Morphology. PhD Thesis, Goteborg University, Goteborg.
  • Johansson, L. C. & Norberg, R. A. 2003. Delta-wing function of webbed feet gives hydrodynamic lift for swimming propulsion in birds. Nature, 424, 65-68.
  • Johnsgard, P. A. 1987. Diving Birds of North America. NE: University of Nebraska Press, Lincoln. https://digitalcommons.unl.edu/bioscidivingbirds
  • Kaftanovskii, Y. M. 1951. Alcidine birds of the East Atlantic. MOIP, Moscow, 1-170 [In Russian].
  • Klingenberg, C. P. 2011. MorphoJ: an integrated software package for geometric morphometrics. Mol Ecol Resour, 11, 353-357. DOI: 10.1111/j.1755-0998.2010.02924.x
  • Kurochkin, E. N. 1971. Adaptive structural features and locomotion of waterfowl. In: Nichiporovich, A. A., ed. Itogi nauki. Zoologiya pozvonochnyh 1969. VINITI, Moscow, 94-135 [In Russian].
  • Kurochkin, E. N. 1991. Familia Pelecanidae. In: Ilichev, V. D., ed. Fauna of the world: Birds: Handbook. Agropromizdat, Moscow, 44-45 [In Russian].
  • Livezey, B. C. & Humphrey, P. S. 1986. Flightlessness in Steamerducks (Anatidae: Tachyeres): its morphological bases and probable evolution. Evolution, 40, 540-558. https://doi.org/10.1111/j.1558-5646.1986.tb00506.x
  • Llimona, F. & del Hoyo, J. 1992. Order Podicipediformes. In: del Hoyo, J., Elliott, A. & Sargatal, J., eds. Handbook of the birds of the world. Links edicions, Barcelona, 174-197.
  • Orkney, A., Bjarnason, A., Tronrud, B. C., & Benson, R. B. 2021. Patterns of skeletal integration in birds reveal that adaptation of element shapes enables coordinated evolution between anatomical modules. Nature Ecology & Evolution, 5 (9), 1250-1258. DOI: 10.1038/s41559-021-01509-w
  • Ptushenko, E. S. 1952. The Order Anseriformes. In: Dement'ev, G. P. & Gladkov, N. A., eds. The birds of the Soviet Union, vol. 4. Sovietskaya Nauka, Moscow, 247-636 [In Russian].
  • Raikow, R. J. 1970. Evolution of diving adaptations in the stiff-tailed ducks. Univ. Calif. publ. zool. 94, 1-52 .
  • Raikow, R. 1985. Locomotor system. In: King, A. S. & McLelland, J., eds. Form and Function in birds, vol. 3. Academic Press, London, 57-147.
  • R Core Team. 2020. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna. URL http://www.R-project.org/
  • Revell, L. J. 2012. phytools: An R package for phylogenetic comparative biology (and other things). Methods Ecol. Evol., 3, 217-223. https://doi.org/10.1111/j.2041-210X.2011.00169.x
  • Rohlf, F. J. 2017. tpsDig, digitize landmarks and outlines, version 2.31. Department of Ecology and Evolution, State University of New York at Stony Brook.
  • Schliep, K. P. 2011. phangorn: phylogenetic analysis in R. Bioinformatics, 27 (4), 592-593. DOI: 10.1093/bioinformatics/btq706
  • Shatkovska, O. V., Ghazali, M., Mytiai, I. S. & Druz, N. 2018. Size and shape correlation of birds' pelvis and egg: Impact of developmental mode, habitat, and phylogeny. Journal of Morphology, 279, 1590-1602. https:// doi.org/10.1002/jmor.20888
  • Shatkovska, O. V. & Ghazali, M. 2020. Integration of skeletal traits in some passerines: impact (or the lack thereof) of body mass, phylogeny, diet and habitat. J Anat, 236, 274-287. https://doi.org/10.1111/joa.13095
  • Shealer, D. A. 2002. Foraging behavior and food of seabirds. In: Schreiber, E. A. & Burge. J., eds. Biology of marine birds, 14, 137-177.
  • Shoop, W. & Tilson, E. 2022. Plunge diving by Brown Pelicans resembles a Split-S Turn. Journal of Field Ornithology, 93 (1), 2. https://doi.org/10.5751/JFO-00064-930102
  • Shmalgauzen, I. I. 1982. Organizm kak celoe v individual'nom i istoricheskom razvitii [The organism as a whole in individual and historical development]. Nauka, Moscow, 1-383 [In Russian].
  • Spangenberg, E. P. 1951. The Order Ralliformes. In: Dement'ev, G. P. & Gladkov, N. A., eds. The birds of the Soviet Union, vol. 3. Sovietskaya Nauka, Moscow, 604-677 [In Russian].
  • Stegmann, B. K. 1949. The center of gravity of birds and its significance for the position of wings during flight. Izvestiya akademii nauk. Seriya biologicheskaya, 2, 208-217.
  • Stoessel, A., Kilbourne, B. M. & Fischer, M. S. 2013. Morphological integration vs. ecological plasticity in the avian pelvic limb skeleton. J. Morphol., 274, 483-495. https://doi.org/10.1002/jmor.20109
  • Storer, R. W. 1960. Evolution in the diving birds. In: Bergman, G., Donner & K. O., Haartman, L. V., eds. Proceedings of the Twelth International Ornithological Congress. University of Helsinki, Zoological Institute, Finland, 694-707.
  • Sudilovskaya, A. M. 1951. The Order Pelecaniformes. In: Dement'ev, G. P. & Gladkov, N. A., eds. The birds of the Soviet Union, vol. 1. Sovietskaya Nauka, Moscow, 13-68 [In Russian].
  • Sych, V. F. 1992. On the role of morpho-functional correlations in aberrant locomotory system appearance in Galliform birds. Vestnik Zoologii, 4, 64-68.
  • Townsend, C. W. 1909. The use of wings and feet by diving birds. Auk, 26, 234-248. https://doi. org/10.2307/4070795
  • Watanuki, Y., Kato, A., Naito, Y., Robertson, G. & Robinson, S. 1997. Diving and foraging behaviour of Adelie penguins in areas with and without fast sea-ice. Polar Biol. 17, 296-304. https://doi.org/10.1007/ PL00013371
  • Zeffer, A., Johansson, L. C. & Marmebro, A. 2003. Functional correlation between habitat use and leg morphology in birds (Aves). Biol. J. Linn. Soc. Lond., 79, 461-484. https://doi.org/10.1046/j.1095-8312.2003.00200.x