Published November 30, 2018
| Version v1
Journal article
Restricted
Structure and biosynthesis of benzoxazinoids: Plant defence metabolites with potential as antimicrobial scaffolds
Description
de Bruijn, Wouter J.C., Gruppen, Harry, Vincken, Jean-Paul (2018): Structure and biosynthesis of benzoxazinoids: Plant defence metabolites with potential as antimicrobial scaffolds. Phytochemistry 155: 233-243, DOI: 10.1016/j.phytochem.2018.07.005, URL: http://dx.doi.org/10.1016/j.phytochem.2018.07.005
Files
Linked records
Additional details
Identifiers
- LSID
- urn:lsid:plazi.org:pub:3050FFB53C3EEF71367F4B776B36B41A
- URL
- http://publication.plazi.org/id/3050FFB53C3EEF71367F4B776B36B41A
Related works
- Has part
- Taxonomic treatment: http://treatment.plazi.org/id/CC6987CD3C3DEF72361B4A786A08B130 (URL)
- Taxonomic treatment: http://treatment.plazi.org/id/CC6987CD3C38EF76354D4E386A5DB380 (URL)
- Figure: 10.5281/zenodo.10484229 (DOI)
- Figure: 10.5281/zenodo.10484231 (DOI)
- Figure: 10.5281/zenodo.10484233 (DOI)
References
- Adhikari, K.B., Laerke, H.N., Mortensen, A.G., Fomsgaard, I.S., 2012. Plasma and urine concentrations of bioactive dietary benzoxazinoids and their glucuronidated conjugates in rats fed a rye bread-based diet. J. Agric. Food Chem. 60, 11518-11524.
- Adhikari, K.B., Tanwir, F., Gregersen, P.L., Steffensen, S.K., Jensen, B.M., Poulsen, L.K., Nielsen, C.H., Hoyer, S., Borre, M., Fomsgaard, I.S., 2015. Benzoxazinoids: cereal phytochemicals with putative therapeutic and health-protecting properties. Mol. Nutr. Food Res. 59, 1324-1338.
- Ahmad, S., Veyrat, N., Gordon-Weeks, R., Zhang, Y.H., Martin, J., Smart, L., Glauser, G., Erb, M., Flors, V., Frey, M., Ton, J., 2011. Benzoxazinoid metabolites regulate innate immunity against aphids and fungi in maize. Plant Physiol. 157, 317-327.
- Alipieva, K.I., Taskova, R.M., Evstatieva, L.N., Handjieva, N.V., Popov, S.S., 2003. Benzoxazinoids and iridoid glucosides from four Lamium species. Phytochemistry 64, 1413-1417.
- Alper-Hayta, S., AkI- Sener, E., Tekiner-Gulbas, B., YIldIz, I., Temiz-ArpacI, O., YalcIn, I., Altanlar, N., 2006. Synthesis, antimicrobial activity and QSARs of new benzoxazine- 3-ones. Eur. J. Med. Chem. 41, 1398-1404.
- Anai, T., Aizawa, H., Ohtake, N., Kosemura, S., Yamamura, S., Hasegawa, K., 1996. A new auxin-inhibiting substance, 4-Cl-6,7-dimethoxy-2-benzoxazolinone, from light-grown maize shoots. Phytochemistry 42, 273-275.
- Atwal, A.S., Teather, R.M., Liss, S.N., Collins, F.W., 1992. Antimicrobial activity of 2- aminophenoxazin-3-one under anaerobic conditions. Can. J. Microbiol. 38, 1084-1088.
- Bakera, B., Makowska, B., Groszyk, J., Niziolek, M., Orczyk, W., Bolibok-Bragoszewska, H., Hromada-Judycka, A., Rakoczy-Trojanowska, M., 2015. Structural characteristics of ScBx genes controlling the biosynthesis of hydroxamic acids in rye (Secale cereale L.). J. Appl. Genet. 56, 287-298.
- Baumeler, A., Hesse, M., Werner, C., 2000. Benzoxazinoids-cyclic hydroxamic acids, lactams and their corresponding glucosides in the genus Aphelandra (Acanthaceae). Phytochemistry 53, 213-222.
- Bonnington, L., Eljarrat, E., Guillamon, M., Eichhorn, P., Taberner, A., Barcelo, D., 2003. Development of a liquid chromatography-electrospray-tandem mass spectrometry method for the quantitative determination of benzoxazinone derivatives in plants. Anal. Chem. 75, 3128-3136.
- Bravo, H.R., Copaja, S.V., Figueroa-Duarte, S., Lamborot, M., Martin, J.S., 2005. 1,4- benzoxazin-3-one, 2-benzoxazolinone and gallic acid from Calceolaria thyrsilora Graham and their antibacterial activity. Z. Naturforsch., C: Biosci. 60, 389-393.
- Bravo, H.R., Copaja, S.V., Lazo, W., 1997. Antimicrobial activity of natural 2- benzoxazolinones and related derivatives. J. Agric. Food Chem. 45, 3255-3257.
- Bravo, H.R., Copaja, S.V., Martin, J.S., 2004. Contents of 1,4-benzoxazin-3-ones and 2- benzoxazolinone from Stenandrium dulce (Nees). Z. Naturforsch., C: Biosci. 59, 177-180.
- Bravo, H.R., Lazo, W., 1993. Antimicrobial activity of cereal hydroxamic acids and related compounds. Phytochemistry 33, 569-571.
- Bravo, H.R., Lazo, W., 1996. Antialgal and antifungal activity of natural hydroxamic acids and related compounds. J. Agric. Food Chem. 44, 1569-1571.
- Bredenberg, J.B., Honkanen, E., Virtanen, A.I., 1962. Kinetics and mechanism of decomposition of 2,4-dihydroxy-1,4-benzoxazin-3-one. Acta Chem. Scand. 16, 135-&.
- Cambier, V., Hance, T., de Hoffmann, E., 1999. Non-injured maize contains several 1,4- benzoxazin-3-one related compounds but only as glucoconjugates. Phytochem. Anal. 10, 119-126.
- Copaja, S.V., Villarroel, E., Bravo, H.R., Pizarro, L., Argandona, V.H., 2006. Hydroxamic acids in Secale cereale L. and the relationship with their antifeedant and allelopathic properties. Z. Naturforsch., C: Biosci. 61, 670-676.
- D'Souza, L., Wahidulla, S., Mishra, P.D., 1997. Bisoxazolinone from the mangrove Acanthus illicifolius. Indian J. Chem. Sect. B Org. Chem. Incl. Med. Chem. 36, 1079-1081.
- de Bruijn, W.J.C., Vincken, J.-P., Duran, K., Gruppen, H., 2016. Mass spectrometric characterization of benzoxazinoid glycosides from Rhizopus -elicited wheat (Triticum aestivum) seedlings. J. Agric. Food Chem. 64, 6267-6276.
- Dick, R., Rattei, T., Haslbeck, M., Schwab, W., Gierl, A., Frey, M., 2012. Comparative analysis of benzoxazinoid biosynthesis in monocots and dicots: independent recruitment of stabilization and activation functions. Plant Cell 24, 915-928.
- Dufour, V., Stahl, M., Baysse, C., 2015. The antibacterial properties of isothiocyanates. Microbiol. 161, 229-243.
- Dutartre, L., Hilliou, F., Feyereisen, R., 2012. Phylogenomics of the benzoxazinoid biosynthetic pathway of Poaceae: gene duplications and origin of the Bx cluster. BMC Evol. Biol. 12.
- Eljarrat, E., Barcelo, D., 2001. Sample handling and analysis of allelochemical compounds in plants. Trac. Trends Anal. Chem. 20, 584-590.
- Fang, L., Zuo, H., Li, Z.B., He, X.Y., Wang, L.Y., Tian, X., Zhao, B.X., Miao, J.Y., Shin, D.S., 2011. Synthesis of benzo[b][1,4]oxazin-3(4H)-ones via smiles rearrangement for antimicrobial activity. Med. Chem. Res. 20, 670-677.
- Fielder, D.A., Collins, F.W., Blackwell, B.A., Bensimon, C., Apsimon, J.W., 1994. Isolation and characterization of 4-acetyl-benzoxazolin-2-one (4-ABOA), a new benzoxazolinone from Zea mays. Tetrahedron Lett. 35, 521-524.
- Fomsgaard, I.S., Mortensen, A.G., Carlsen, S.C.K., 2004. Microbial transformation products of benzoxazolinone and benzoxazinone allelochemicals - a review. Chemosphere 54, 1025-1038.
- Frey, M., Chomet, P., Glawischnig, E., Stettner, C., Grun, S., Winklmair, A., Eisenreich, W., Bacher, A., Meeley, R.B., Briggs, S.P., Simcox, K., Gierl, A., 1997. Analysis of a chemical plant defense mechanism in grasses. Science 277, 696-699.
- Frey, M., Schullehner, K., Dick, R., Fiesselmann, A., Gierl, A., 2009. Benzoxazinoid biosynthesis, a model for evolution of secondary metabolic pathways in plants. Phytochemistry 70, 1645-1651.
- Gibbons, S., 2004. Anti-staphylococcal plant natural products. Nat. Prod. Rep. 21, 263-277.
- Glensk, M., Gajda, B., Franiczek, R., Krzyzanowska, B., Biskup, I., Wlodarczyk, M., 2016. In vitro evaluation of the antioxidant and antimicrobial activity of DIMBOA [2,4- dihydroxy-7-methoxy-2H -1,4-benzoxazin-3(4H)-one]. Nat. Prod. Res. 30, 1305-1308.
- Grambow, H.J., Luckge, J., Klausener, A., Muller, E., 1986. Occurrence of 2-(2-hydroxy- 4,7-dimethoxy-2H -1,4-benzoxazin-3-one)-β -D-glucopyranoside in Triticum aestivum leaves and its conversion into 6-methoxy-benzoxazolinone. Z. Naturforsch., C: Biosci. 41, 684-690.
- Grun, S., Frey, M., Gierl, A., 2005. Evolution of the indole alkaloid biosynthesis in the genus Hordeum: distribution of gramine and DIBOA and isolation of the benzoxazinoid biosynthesis genes from Hordeum lechleri. Phytochemistry 66, 1264-1272.
- Hanawa, T., Osaki, T., Manzoku, T., Fukuda, M., Kawakami, H., Tomoda, A., Kamiya, S., 2010. In vitro antibacterial activity of Phx-3 against Helicobacter pylori. Biol. Pharm. Bull. 33, 188-191.
- Handrick, V., Robert, C.A.M., Ahern, K.R., Zhou, S.Q., Machado, R.A.R., Maag, D., Glauser, G., Fernandez-Penny, F.E., Chandran, J.N., Rodgers-Melnik, E., Schneider, B., Buckler, E.S., Boland, W., Gershenzon, J., Jander, G., Erb, M., Kollner, T.G., 2016. Biosynthesis of 8-O-methylated benzoxazinoid defense compounds in maize. Plant Cell 28, 1682-1700.
- Hanhineva, K., Rogachev, I., Aura, A.M., Aharoni, A., Poutanen, K., Mykkanen, H., 2011. Qualitative characterization of benzoxazinoid derivatives in whole grain rye and wheat by LC-MS metabolite profiling. J. Agric. Food Chem. 59, 921-927.
- Hashimoto, Y., Shudo, K., 1996. Chemistry of biologically active benzoxazinoids. Phytochemistry 43, 551-559.
- Hayakawa, I., Atarashi, S., Yokohama, S., Imamura, M., Sakano, K.I., Furukawa, M., 1986. Synthesis and antibacterial activities of optically-active ofloxacin. Antimicrob. Agents Chemother. 29, 163-164.
- Hietala, P.K., Virtanen, A.I., 1960. Precursors of benzoxazolinone in rye plants II. Precursor I, the glucoside. Acta Chem. Scand. 14, 502-504.
- Hofman, J., Hofmanova, O., 1969. 1,4-Benzoxazine derivatives in plants - sephadex fractionation and identification of a new glucoside. Eur. J. Biochem. 8, 109-112.
- Hofman, J., Masojidkova, M., 1973. 1,4-Benzoxazine glucosides from Zea mays. Phytochemistry 12, 207-208.
- Hofmann, D., Knop, M., Hao, H., Hennig, L., Sicker, D., Schulz, M., 2006. Glucosides from MBOA and BOA detoxification by Zea mays and Portulaca oleracea. J. Nat. Prod. 69, 34-37.
- Honkanen, E., Virtanen, A.I., 1960. The synthesis of precursor II of benzoxazolinone formed in rye plants, and the enzymic hydrolysis of precursor I, the glucoside. Acta Chem. Scand. 14, 504-507.
- Huo, C.H., An, D.G., Wang, B., Zhao, Y.Y., Lin, W.H., 2005. Structure elucidation and complete NMR spectral assignments of a new benzoxazolinone glucoside from Acanthus ilicifolius. Magn. Reson. Chem. 43, 343-345.
- Jonczyk, R., Schmidt, H., Osterrieder, A., Fiesselmann, A., Schullehner, K., Haslbeck, M., Sicker, D., Hofmann, D., Yalpani, N., Simmons, C., Frey, M., Gierl, A., 2008. Elucidation of the final reactions of DIMBOA-glucoside biosynthesis in maize: characterization of Bx6 and Bx7. Plant Physiol. 146, 1053-1063.
- Jorgensen, K., Rasmussen, A.V., Morant, M., Nielsen, A.H., Bjarnholt, N., Zagrobelny, M., Bak, S., Moller, B.L., 2005. Metabolon formation and metabolic channeling in the biosynthesis of plant natural products. Curr. Opin. Plant Biol. 8, 280-291.
- Kanchanapoom, T., Kamel, M.S., Kasai, R., Picheansoonthon, C., Hiraga, Y., Yamasaki, K., 2001a. Benzoxazinoid glucosides from Acanthus ilicifolius. Phytochemistry 58, 637-640.
- Kanchanapoom, T., Kasai, R., Picheansoonthon, C., Yamasaki, K., 2001b. Megastigmane, aliphatic alcohol and benzoxazinoid glycosides from Acanthus ebracteatus. Phytochemistry 58, 811-817.
- Kato-Noguchi, H., Kosemura, S., Yamamura, S., 1998. Allelopathic potential of 5-chloro- 6-methoxy-2-benzoxazolinone. Phytochemistry 48, 433-435.
- Kohler, A., Maag, D., Veyrat, N., Glauser, G., Wolfender, J.L., Turlings, T.C.J., Erb, M., 2015. Within-plant distribution of 1,4-benzoxazin-3-ones contributes to herbivore niche differentiation in maize. Plant Cell Environ. 38, 1081-1093.
- Le-Van, N., Wratten, S.J., 1984. Compound 30.4, an unusual chlorinated 1,4-benzoxazin- 3-one derivative from corn (Zea mays). Tetrahedron Lett. 25, 145-148.
- Maag, D., Dalvit, C., Thevenet, D., Kohler, A., Wouters, F.C., Vassao, D.G., Gershenzon, J., Wolfender, J.L., Turlings, T.C.J., Erb, M., Glauser, G., 2014. 3-β -D-Glucopyranosyl-6- methoxy-2-benzoxazolinone (MBOA- N -Glc) is an insect detoxification product of maize 1,4-benzoxazin-3-ones. Phytochemistry 102, 97-105.
- Macias, F.A., Chinchilla, N., Arroyo, E., Molinillo, J.M.G., Marin, D., Varela, R.M., 2010. Combined strategy for phytotoxicity enhancement of benzoxazinones. J. Agric. Food Chem. 58, 2047-2053.
- Macias, F.A., Marin, D., Oliveros-Bastidas, A., Castellano, D., Simonet, A.M., Molinillo, J.M.G., 2005. Structure-activity relationships (SAR) studies of benzoxazinones, their degradation products and analogues. Phytotoxicity on standard target species (STS). J. Agric. Food Chem. 53, 538-548.
- Macias, F.A., Marin, D., Oliveros-Bastidas, A., Castellano, D., Simonet, A.M., Molinillo, J.M.G., 2006a. Structure-activity relationship (SAR) studies of benzoxazinones, their degradation products, and analogues. Phytotoxicity on problematic weeds Avena fatua L. and Lolium rigidum Gaud. J. Agric. Food Chem. 54, 1040-1048.
- Macias, F.A., Marin, D., Oliveros-Bastidas, A., Molinillo, J.M.G., 2006b. Optimization of benzoxazinones as natural herbicide models by lipophilicity enhancement. J. Agric. Food Chem. 54, 9357-9365.
- Macias, F.A., Marin, D., Oliveros-Bastidas, A., Molinillo, J.M.G., 2009. Rediscovering the bioactivity and ecological role of 1,4-benzoxazinones. Nat. Prod. Rep. 26, 478-489.
- Makowska, B., Bakera, B., Rakoczy-Trojanowska, M., 2015. The genetic background of benzoxazinoid biosynthesis in cereals. Acta Physiol. Plant. 37.
- Malan, C., Visser, J.H., van de Venter, H.A., 1984. Screening for DIMBOA (benzoxazinone) concentration among South African inbred maize lines and sorghum cultivars. S. Afr. J. Plant Soil 1, 99-102.
- Meihls, L.N., Handrick, V., Glauser, G., Barbier, H., Kaur, H., Haribal, M.M., Lipka, A.E., Gershenzon, J., Buckler, E.S., Erb, M., Kollner, T.G., Jander, G., 2013. Natural variation in maize aphid resistance is associated with 2,4-dihydroxy-7-methoxy-1,4- benzoxazin-3-one glucoside methyltransferase activity. Plant Cell 25, 2341-2355.
- Mohamed, G.A., Ibrahim, S.R.M., Abdelkader, M.S.A., Al-Musayeib, N.M., Ghoneim, M., Ross, S.A., 2014. Zeaoxazolinone, a new antifungal agent from Zea mays roots. Med. Chem. Res. 23, 4627-4630.
- Moraes, M.C.B., Birkett, M.A., Gordon-Weeks, R., Smart, L.E., Martin, J.L., Pye, B.J., Bromilow, R., Pickett, J.A., 2008. cis -Jasmone induces accumulation of defence compounds in wheat, Triticum aestivum. Phytochemistry 69, 9-17.
- Neal, A.L., Ahmad, S., Gordon-Weeks, R., Ton, J., 2012. Benzoxazinoids in root exudates of maize attract Pseudomonas putida to the rhizosphere. PLoS One 7.
- Niemeyer, H.M., 1988. Hydroxamic acids (4-hydroxy-1,4-benzoxazin-3-ones), defense chemicals in the Gramineae. Phytochemistry 27, 3349-3358.
- Niemeyer, H.M., 2009. Hydroxamic acids derived from 2-hydroxy-2H -1,4-benzoxazin- 3(4H)-one: key defense chemicals of cereals. J. Agric. Food Chem. 57, 1677-1696.
- Nomura, T., Ishihara, A., Imaishi, H., Endo, T.R., Ohkawa, H., Iwamura, H., 2002. Molecular characterization and chromosomal localization of cytochrome P450 genes involved in the biosynthesis of cyclic hydroxamic acids in hexaploid wheat. Mol. Genet. Genom. 267, 210-217.
- Nomura, T., Ishihara, A., Imaishi, H., Ohkawa, H., Endo, T.R., Iwamura, H., 2003. Rearrangement of the genes for the biosynthesis of benzoxazinones in the evolution of Triticeae species. Planta 217, 776-782.
- Oikawa, A., Ishihara, A., Hasegawa, M., Kodama, O., Iwamura, H., 2001. Induced accumulation of 2-hydroxy-4,7-dimethoxy-1,4-benzoxazin-3-one glucoside (HDMBOAGlc) in maize leaves. Phytochemistry 56, 669-675.
- Oikawa, A., Ishihara, A., Iwamura, H., 2002. Induction of HDMBOA-Glc accumulation and DIMBOA-Glc 4-O -methyltransferase by jasmonic acid in poaceous plants. Phytochemistry 61, 331-337.
- Oikawa, A., Ishihara, A., Tanaka, C., Mori, N., Tsuda, M., Iwamura, H., 2004. Accumulation of HDMBOA-Glc is induced by biotic stresses prior to the release of MBOA in maize leaves. Phytochemistry 65, 2995-3001.
- Ozden, S., Ozden, T., Attila, I., Kucukislamoglu, M., Okatan, A., 1992. Isolation and identification via high-performance liquid chromatography and thin-layer chromatography of benzoxazolinone precursors from Consolida orientalis flowers. J. Chromatogr. A 609, 402-406.
- Ozden, S., Ozturk, A.M., Goker, H., Altanlar, N., 2000. Synthesis and antimicrobial activity of some new 4-hydroxy-2H -1,4-benzoxazin-3(4H)-ones. Farm 55, 715-718.
- Pedersen, H.A., Heinrichson, K., Fomsgaard, I.S., 2017. Alterations of the benzoxazinoid profiles of uninjured maize seedlings during freezing, storage, and lyophilization. J. Agric. Food Chem. 65, 4103-4110.
- Pihlava, J.M., Kurtelius, T., 2016. Determination of benzoxazinoids in wheat and rye beers by HPLC-DAD and UPLC-QTOF MS. Food Chem. 204, 400-408.
- Pratt, K., Kumar, P., Chilton, W.S., 1995. Cyclic hydroxamic acids in dicotyledonous plants. Biochem. Systemat. Ecol. 23, 781-785.
- Rakoczy-Trojanowska, M., Orczyk, W., Krajewski, P., Bocianowski, J., Stochmal, A., Kowalczyk, M., 2017. ScBx gene based association analysis of hydroxamate content in rye (Secale cereale L.). J. Appl. Genet. 58, 1-9.
- Schullehner, K., Dick, R., Vitzthum, F., Schwab, W., Brandt, W., Frey, M., Gierl, A., 2008. Benzoxazinoid biosynthesis in dicot plants. Phytochemistry 69, 2668-2677.
- Schulz, M., Filary, B., Kuhn, S., Colby, T., Harzen, A., Schmidt, J., Sicker, D., Hennig, L., Hofmann, D., Disko, U., Anders, N., 2016. Benzoxazolinone detoxification by Nglucosylation: the multi-compartment-network of Zea mays L. Plant Signal. Behav. 11.
- Schulz, M., Marocco, A., Tabaglio, V., Macias, F.A., Molinillo, J.M.G., 2013. Benzoxazinoids in rye allelopathy - from discovery to application in sustainable weed control and organic farming. J. Chem. Ecol. 39, 154-174.
- Schulz, M., Sicker, D., Schackow, O., Hennig, L., Hofmann, D., Disko, U., Ventura, M., Basyuk, K., 2017. 6-Hydroxy-5-nitrobenzo[d]oxazol-2(3H)-one - a degradable derivative of natural 6-hydroxybenzoxazolin-2(3H)-one produced by Pantoea ananatis. Commun. Integr. Biol. 10, e1302633.
- Schulz, M., Wieland, I., 1999. Variation in metabolism of BOA among species in various field communities - biochemical evidence for co-evolutionary processes in plant communities? Chemoecology 9, 133-141.
- Sicker, D., Frey, M., Schulz, M., Gierl, A., 2000. Role of natural benzoxazinones in the survival strategy of plants. Int. Rev. Cytol. Surv. Cell Biol. 198, 319-346.
- Sicker, D., Schneider, B., Hennig, L., Knop, M., Schulz, M., 2001. Glycoside carbamates from benzoxazolin-2(3H)-one detoxification in extracts and exudates of corn roots. Phytochemistry 58, 819-825.
- Smist, M., Kwiecien, H., Krawczyk, M., 2016. Synthesis and antifungal activity of 2H -1,4- benzoxazin-3(4H)-one derivatives. J. Environ. Sci. Health Part B Pestic. Food Contam. Agric. Wastes 51, 393-401.
- Soltoft, M., Jorgensen, L.N., Svensmark, B., Fomsgaard, I.S., 2008. Benzoxazinoid concentrations show correlation with Fusarium Head Blight resistance in Danish wheat varieties. Biochem. Systemat. Ecol. 36, 245-259.
- Shimizu, S., Suzuki, M., Tomoda, A., Arai, S., Taguchi, H., Hanawa, T., Kamiya, A., 2004. Phenoxazine compounds produced by the reactions with bovine hemoglobin show antimicrobial activity against non-tuberculosis mycobacteria. Tohoku J. Exp. Med. 203, 47-52.
- Tanwir, F., Dionisio, G., Adhikari, K.B., Fomsgaard, I.S., Gregersen, P.L., 2017. Biosynthesis and chemical transformation of benzoxazinoids in rye during seed germination and the identification of a rye Bx6-like gene. Phytochemistry 140, 95-107.
- Tanwir, F., Fredholm, M., Gregersen, P.L., Fomsgaard, I.S., 2013. Comparison of the levels of bioactive benzoxazinoids in different wheat and rye fractions and the transformation of these compounds in homemade foods. Food Chem. 141, 444-450.
- Tipton, C.L., Buell, E.L., 1970. Ferric iron complexes of hydroxamic acids from maize. Phytochemistry 9, 1215-1217.
- Uruma, T., Yamaguchi, H., Fukuda, M., Kawakami, H., Goto, H., Kishimoto, T., Yamamoto, Y., Tomoda, A., Kamiya, S., 2005. Chlamydia pneumoniae growth inhibition in human monocytic THP-1 cells and human epithelial HEp-2 cells by a novel phenoxazine derivative. J. Med. Microbiol. 54, 1143-1149.
- Villagrasa, M., Guillamon, M., Labandeira, A., Taberner, A., Eljarrat, E., Barcelo, D., 2006. Benzoxazinoid allelochemicals in wheat: distribution among foliage, roots, and seeds. J. Agric. Food Chem. 54, 1009-1015.
- Virtanen, A.I., Hietala, P.K., 1955. 2(3)-Benzoxazolinone, an anti-Fusarium factor in rye seedlings. Acta Chem. Scand. 9, 1543-1544.
- von Rad, U., Huttl, R., Lottspeich, F., Gierl, A., Frey, M., 2001. Two glucosyltransferases are involved in detoxification of benzoxazinoids in maize. Plant J. 28, 633-642.
- Walker, V., Couillerot, O., Von Felten, A., Bellvert, F., Jansa, J., Maurhofer, M., Bally, R., Moenne-Loccoz, Y., Comte, G., 2012. Variation of secondary metabolite levels in maize seedling roots induced by inoculation with Azospirillum, Pseudomonas and glomus consortium under field conditions. Plant Soil 356, 151-163.
- Whitney, N.J., Mortimore, C.G., 1961. Effect of 6-methoxybenzoxazolinone on growth of Xanthomonas stewartii (Erw. Smith) Dowson and its presence in sweet corn (Zea mays var. Saccharata bailey). Nature 189, 596-597.
- Wieland, I., Kluge, M., Schneider, B., Schmidt, J., Sicker, D., Schulz, M., 1998. 3-β -dglucopyranosyl-benzoxazolin-2(3H)-one - a detoxification product of benzoxazolin- 2(3H)-one in oat roots. Phytochemistry 49, 719-722.
- Woodward, M.D., Corcuera, L.J., Schnoes, H.K., Helgeson, J.P., Upper, C.D., 1979. Identification of 1,4-benzoxazin-3-ones in maize extracts by gas-liquid chromatography and mass spectrometry. Plant Physiol. 63, 9-13.
- Wouters, F.C., Gershenzon, J., Vassao, D.G., 2016. Benzoxazinoids: reactivity and modes of action of a versatile class of plant chemical defenses. J. Braz. Chem. Soc. 27, 1379-1397.
- Wouters, F.C., Reichelt, M., Glauser, G., Bauer, E., Erb, M., Gershenzon, J., Vassao, D.G., 2014. Reglucosylation of the benzoxazinoid DIMBOA with inversion of stereochemical configuration is a detoxification strategy in lepidopteran herbivores. Angew. Chem. Int. Ed. 53, 11320-11324.
- Wu, W.H., Chen, T.Y., Lu, R.W., Chen, S., Chang, C.C., 2012. Benzoxazinoids from Scoparia dulcis (sweet broomweed) with antiproliferative activity against the DU-145 human prostate cancer cell line. Phytochemistry 83, 110-115.
- Yalcin, I., Tekiner, B.P., Oren, I.Y., Arpaci, O.T., Aki-Sener, E., Altanlar, N., 2003. Synthesis and antimicrobial activity of some novel 2,6,7-trisubstituted-2H -3,4- dihydro-1,4-benzoxazin-3-one derivatives. Indian J. Chem. Sect. B Org. Chem. Incl. Med. Chem. 42, 905-909.
- Zasada, I.A., Rice, C.P., Meyer, S.L.F., 2007. Improving the use of rye (Secale cereale) for nematode management: potential to select cultivars based on Meloidogyne incognita host status and benzoxazinoid content. Nematology 9, 53-60.
- Zhao, D., Xie, L.J., Yu, L., An, N., Na, W., Chen, F., Li, Y.B., Tan, Y.F., Zhang, X.P., 2015. New 2-benzoxazolinone derivatives with cytotoxic activities from the roots of Acanthus ilicifolius. Chem. Pharm. Bull. 63, 1087-1090.