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Starting with articles by Bock (1973) and Wiley
(1975) in this journal, the field of systematic biology
has a history, reviewed by Helfenbein and DeSalle
(2005), of examining its methods in the context of the
philosophy of science articulated by Karl R. Popper (e.g.,
1959, 1962, 1983). Two main categories of debates have
emerged in this literature. In one, Popper’s philosophy
is assumed to be relevant, and it is used to promote some
systematic methods and criticize others (e.g., Siddall
and Kluge 1997; Kluge 2001), which has led to counter-
arguments proposing that the criticized methods are
equally compatible with Popper’s philosophy (e.g., de
Queiroz and Poe 2001, 2003). In a second category
of debates, the relevance of Popper’s philosophy to
systematics has been questioned (e.g., Rieppel 2003,
2005; Vogt 2008) and defended (e.g., Farris 2013, 2014).
These debates can provide insights of at least two
different kinds. Systematic biologists can gain a better
understanding of how their methods and practices
relate to general ideas about the nature of science,
while philosophers can assess how well Popper’s ideas
about the nature of science describe the methods and
practices in a discipline other than the ones (primarily
physics and astronomy) upon which those ideas were
based.

As part of the continuing debates about Popperian
philosophy and phylogenetics, Farris (2013) recently
argued that Felsenstein (2004) was incorrect in sugges-
ting that Popper’s concept of degree of corroboration,
C, relies on a Bayesian approach, that Helfenbein and
DeSalle (2005) were misguided in adopting Felsenstein’s
suggestion as a justification for Bayesian approaches,
and that Rieppel (2005) assigned an incorrect value to
the term p(e|hb) in the defining formula of C. Here, I
wish to call attention to an article regarding Popper’s
philosophy and its relationship to phylogenetics (de
Queiroz 2004) that is highly relevant to, but was not
considered in, those disagreements. I will summarize
some of the main conclusions of that article and then
illustrate how the perspective developed in it and
two earlier publications (de Queiroz and Poe 2001,
2003), which equates specific phylogenetic analyses with

specific components of C, clarifies issues discussed
by Felsenstein (2004), Helfenbein and DeSalle (2005),
Rieppel (2005), and Farris (2013).

The article in question (de Queiroz 2004) focused on
the concept of test severity, which is assessed using the
term p(e|b) in the defining formula of C (e.g., Popper
1983, p. 238), the full definition of which is C(h|e|b)=
[p(e|hb)−p(e|b)]/ [p(e|hb)−p(eh|b)+p(e|b)]. According to
Popper, the data or evidence (e) used to test a hypothesis
(h) may have a certain probability given that hypothesis
and the background knowledge (b), thereby offering
support for the hypothesis; however, the test can
only be considered severe, and therefore the support
meaningful, if the data have a much lower probability
given the background knowledge (b) alone—that is, in
the absence of the hypothesis being tested. In other
words, the hypothesis can only be considered well-
corroborated if the probability of the evidence given
that hypothesis in conjunction with the background
knowledge, p(e|hb), is substantially greater than the
probability of the evidence given the background
knowledge alone, p(e|b). This idea is embodied in the
numerator of the defining formula of C, which is
the difference between these two quantities: p(e|hb)−
p(e|b).

In the context of phylogenetics, where e is a
phylogenetic data set (e.g., a taxon × character matrix)
and h is a hypothesis of phylogenetic relationships
(e.g., a tree), b, the background knowledge, consists
of those assumptions inherent to the method (model)
used to analyze the data (de Queiroz 2004; see also de
Queiroz and Poe 2001, 2003), including ordered versus
unordered character states, rates (likelihood) or costs
(parsimony) of change between states, and equal versus
variable rates (likelihood) or weights (parsimony)
among characters. One of the basic assumptions
common to diverse phylogenetic methods is that the
terminal taxa are related through common ancestry,
which allows their relationships to be represented by
a tree. In this context, the absence of h is the absence
of the hypothesis of phylogenetic relationships under
the assumption that those relationships are to be
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represented by a tree, which can be represented by an
unresolved (star) tree. Under this interpretation, the
calculation of C, or at least its numerator, which is the
most important part of the concept (the denominator is
simply a “normalization factor” [Popper 1983, p. 240]),
is straightforward in a likelihood framework, because
both of its component terms are likelihoods: p(e|hb)
is likelihood of the (resolved) tree representing the
hypothesis of phylogenetic relationships (normally
the optimal and therefore inferred tree) and p(e|b) is the
likelihood of an unresolved tree for the same taxa. To the
extent that parsimony methods can be expressed in a
likelihood framework (e.g., Farris 1973; Felsenstein 1973;
Goldman 1990; Tuffley and Steel 1997), those methods
can also be used to calculate p(e|hb) and p(e|b), though
different values would be expected for the same h and
e given the differences in b (i.e., between commonly
used likelihood models and those that correspond to
parsimony methods).

The interpretation of Popper’s C just described
thus unifies likelihood and parsimony approaches to
phylogenetic inference under a common philosophical
framework. It also provides a more satisfactory account
of how permutation tail probability (PTP) tests (Faith
and Cranston 1991) exemplify Popper’s ideas about
corroboration. PTP tests have been proposed as methods
for assessing test severity as described by Popper, but
previous attempts to assign values to p(e|hb) and p(e|b)
in that context (e.g., Faith 1992; Faith and Cranston
1992; Faith and Trueman 2001) have been unsatisfactory
(e.g., Farris 1995; Farris et al. 2001; de Queiroz and
Poe 2001; de Queiroz 2004). In the context of the
interpretation of C described above, PTP tests are seen as
analogous to comparisons of the likelihoods of resolved
and unresolved trees (i.e., p(e|hb) and p(e|b)): PTP tests
involve the comparison of optimal tree scores with null
distributions of tree scores derived from randomized
data, and patterns of shared, derived character states
that evolved on an unresolved tree are expected, all else
being equal, to be randomly distributed among taxa (see
de Queiroz [2004] for details).

Grant and Kluge (2008) disagreed with the
above-described interpretation of C. According to
them, “… maximum likelihood does not maximize
explanatory power because it does not discern between
critical evidence (severe tests) and mere data (… contra
de Queiroz 2004).” That assertion is incorrect. Although
it is true that simply identifying the maximum-
likelihood (or maximum parsimony) tree for a given
data set does not involve an assessment of test severity
(de Queiroz and Poe 2001, 2003; de Queiroz 2004), as
described above, test severity can be assessed under
likelihood using a star tree (de Queiroz 2004). Such an
assessment would most certainly distinguish between
critical evidence (characters that have substantially
higher probabilities on the optimal tree than on the star
tree, such as derived character states shared by inferred
sister taxa) and mere data (characters that have similar
probabilities on the optimal tree and the star tree, such
as autapomorphic and invariant characters). Indeed,

that is the very purpose of comparing the likelihoods
of the two trees, as the test will be considered severe
and thus the evidence (e) critical only if the likelihood
of the optimal tree, p(e|hb), is substantially higher than
the likelihood of the star tree, p(e|b), for the data set in
question. In the remainder of this contribution, I will
illustrate how the above-described interpretation of
C (de Queiroz 2004) clarifies several additional issues
discussed by Felsenstein (2004), Helfenbein and DeSalle
(2005), Rieppel (2005), and Farris (2013).

Rieppel (2005; see also Faith [1999]) proposed that the
value of p(e|hb) in the defining formula of C is fixed at
1. Farris (2013) refuted that proposition by quoting a
passage from Popper (1983) that describes a situation
in which the value of p(e|hb) is zero: when e falsifies
h in the presence of b. Farris (2013) also pointed out
that fixing p(e|hb) at 1 would have the effect of doing
away with falsifiers, maximum-likelihood estimation,
and the connection between likelihood and C, which
would (if it were correct) lend credence to Rieppel’s
(2003) proposition that corroboration in contemporary
systematics may not conform to Popper’s description of
that concept. In agreement with Farris (2013; see also
Farris et al. [2001]), the term p(e|hb) is the likelihood of
h, that is, the likelihood of the tree that corresponds to a
particular phylogenetic hypothesis. As such, its value is
the likelihood score of that tree (h) for the analyzed data
set (e) under the assumptions of the analytical model
adopted (b). For real data sets and models employed
by phylogeneticists, the value of p(e|hb) is never=1,
which can be confirmed by checking the tree scores of
any empirical study that employs likelihood methods.
Instead, those values are generally very small positive
numbers (not at all close to 1), which is the reason that
the tree scores are commonly presented as the negative
logarithms of the probabilities.

Rieppel’s (2003) suggestion that modern systematics
may not conform to Popper’s concept of corroboration
rests heavily on the logical interpretation of probabilities.
According to that interpretation, the contradiction or
support for a hypothesis provided by empirical evidence
is absolute: p(e|hb) can only be either 0 or 1; it
cannot be a fractional value. Under that interpretation,
phylogenetic methods are indeed difficult to reconcile
with C, because phylogenetic data (e.g., distributions of
character states among taxa) are never either logically
prohibited, p(e|hb)=0, or logically entailed, p(e|hb)=1,
by a particular tree (Sober 1988; de Queiroz and Poe 2003;
Vogt 2008). Popper, however, did not restrict his concept
of C to the logical interpretation of probabilities. Indeed,
he explicitly developed C in the context of a “formal
probability calculus” that could be interpreted in various
senses, including the frequency interpretation (Popper
1959, p. 320). Moreover, Popper (1959, pp. 189–205)
presented a detailed analysis to support his conclusion
that although probabilistic hypotheses are not falsifiable
in a strict, logical sense, scientists are quite capable
of deciding when such hypotheses are “empirically
confirmed” or “practically falsified” (p. 191). As Popper
(1959) summarized his conclusions, “Thus we can expect
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to be able to refute a probabilistic hypothesis, in the sense
here indicated; and we can expect this perhaps even
more confidently than in the case of a non-probabilistic
hypothesis” (p. 202) and “Thus our analysis shows
that statistical methods are essentially hypothetical-
deductive, and that they proceed by the elimination
of inadequate hypotheses—as do all other methods
of science” (p. 413). A major flaw in Rieppel’s (2003)
analysis of the relevance of Popper’s philosophy to
contemporary systematics is that Rieppel misinterpreted
degree of corroboration as depending on the logical
interpretation of probabilities (p. 268) and overlooked
Popper’s writings on the corroboration and refutation of
probabilistic hypotheses.

Felsenstein (2004, p. 142) proposed that the calculation
of p(e|b) in Popper’s C requires summing over all possible
trees, weighting each by its prior probability. Because
of this supposed reliance on prior probabilities, he con-
cluded that C assumes a Bayesian inference framework,
which is inconsistent with Popper’s otherwise anti-
Bayesian views (e.g., his position that assigning
probabilities to hypotheses is a “mistaken solution
to the problem of induction” [Popper 1983, p. 217]
and his objections to the subjective interpretation of
probabilities). Farris (2013) quoted several passages from
Popper as evidence against Felsenstein’s interpretation
of p(e|b) as Bayesian. He also noted the correspondence
between p(e|hb) and the likelihood of a tree, as well as the
fact that the tree with the strongest corroboration is the
maximum-likelihood tree; however, he left unanswered
the question of how p(e|b) is to be calculated. The
interpretation of p(e|b) as the likelihood of a star tree
(de Queiroz 2004) answers this question directly and
supports Farris’ conclusion that p(e|b) is not a Bayesian
term. The value of p(e|b) is simply the likelihood of an
unresolved tree, the calculation of which requires only
a data set (e) and a model of phylogenetic inference
(b), including estimates of its various parameters. It
involves neither the summing of probabilities over all
possible trees nor the assignment of prior probabilities
to trees.

Helfenbein and DeSalle (2005) suggested that Popper’s
foray into probability theory sent him in a direction that
can be considered Bayesian/likelihoodist, inferring a
Bayesian component from the presence of p(e|hb) in both
Popper’s C and Bayes’ Theorem. Farris (2013) refuted that
suggestion, pointing out that Helfenbein and DeSalle
confused likelihood and Bayesian approaches. Here I
wish to clarify a different issue raised by Helfenbein
and DeSalle (2005; see also Vogt [2008]). Although those
authors did not dispute de Queiroz and Poe’s (2001,
2003) proposition that Popper’s concept of degree of
corroboration is based on Fisher’s concept of likelihood,
they (see also Vogt [2008]) quoted the following passage
from Popper as if it represented a contradiction: “Thus
we have proved that the identification of degree of
corroboration or confirmation with probability (and
even with likelihood) is absurd on both formal and
intuitive grounds ...” (Popper 2002, p. 407). Contrary to
the implication of Helfenbein and DeSalle, this statement

in no way contradicts the idea that C is based on
likelihood (see also Farris [2014]).

The quoted statement was made in the context of
a proposed “… mathematical refutation of all those
theories of induction which identify the degree to which
a statement is supported or confirmed or corroborated
by empirical tests with its degree of probability in the
sense of the calculus [axioms] of probability” (Popper
2002, p. 405). Popper’s refutation of those theories is
highly consistent with Fisher’s motivation for proposing
the concept of likelihood—that is, to avoid the idea that
the support for a hypothesis is to be construed as the
probability of that hypothesis (see de Queiroz and Poe
2001, p. 309). The likelihood of a hypothesis is not the
probability of the hypothesis given the evidence, p(h|e),
but the probability of the evidence given the hypothesis
(and the background knowledge), p(e|hb). In Fisher’s
(1925, pp. 10–11) own words, “… the mathematical
concept of probability is, in most cases, inadequate to
express our mental confidence or diffidence in making
such inferences … the mathematical quantity which
appears to be appropriate for measuring our order of
preference among different possible populations does
not in fact obey the laws of probability. To distinguish
it from probability, I have used the term ‘Likelihood’ to
designate this quantity.”

Despite the basis of C in likelihood, Popper
emphasized that p(e|hb) alone is often inadequate for
assessing the degree of corroboration of a hypothesis,
particularly in cases involving small samples (e.g.,
1959, pp. 413–414). This is the reason why C is not
simply the likelihood of the hypothesis, p(e|hb), but
instead is defined as the (normalized) difference between
the likelihood of the hypothesis in conjunction with
the background knowledge and the likelihood of the
background knowledge alone: p(e|hb)−p(e|b). Advocates
of likelihood-based inference commonly use the (ln
transformed) likelihood ratio, termed support, S, by
Edwards (1972), to compare the relative support for
alternative hypotheses by a given set of data. When the
hypotheses being compared are nested, the likelihoods
are p(e|hb) and p(e|b), the same two quantities in the
numerator of Popper’s C (de Queiroz 2004). Thus,
although degree of corroboration is not to be identified
with the probability of a hypothesis, p(h|e), or even
with its likelihood, p(e|hb), as noted by Popper in the
passage quoted by Helfenbein and DeSalle, C is clearly
based on probabilities in general, and on likelihoods in
particular. Moreover, degree of corroboration, p(e|hb)−
p(e|b), is closely analogous to the likelihood ratio of
nested hypotheses, p(e|hb)/p(e|b).

Helfenbein and DeSalle (2005) discussed Popper’s
writings about probability in general, and those
concerning degree of corroboration in particular, as
if they were strangely incongruent elements that
Popper was somehow trapped into introducing: “Given
Popper’s outlook as detailed in the main text of The Logic
of Scientific Discovery written in the 1930s, before the
appendixes from which the two quotes above were taken,
it is odd that he would rely so heavily on any probabilistic
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approach to the logic of science. Perhaps Popper found
himself on a slope: needing a complement to falsification,
he wrought corroboration; needing an explanation of
corroboration, one distinct from ‘truth confirmation,’ he
slid down into probabilistic reasoning, ending up with
the corroboration formula discussed above” (p. 277).

Contrary to Helfenbein and DeSalle’s unsubstantiated
speculations, Popper’s writings about probability
and degree of corroboration represent well-reasoned
extensions of his fundamental ideas about the logic of
science. Even in the original Logik der Forschung (1934),
Popper devoted an entire chapter (8) and substantial
parts of two others (9 and 10) as well as seven
appendices (i–vii) to probability (The Logic of Scientific
Discovery [Popper 1959] is a translation of Logik der
Forschung [Popper 1934]; additions to the original text
[various footnotes and xii new appendices] are flagged
with asterisks). Moreover, in that same edition Popper
also noted the successes achieved by physics using
probabilistic hypotheses (Chapter 8, section 65), and he
discussed the concepts of corroboration and degree of
corroboration in qualitative (rather than mathematical)
terms (Chapter 10, especially section 82). Thus, it is not
at all surprising that Popper would develop those ideas
further in subsequent publications.

Nor should it be thought that Popper’s formal
definition of degree of corroboration was incidental
based on its appearance in an appendix. The material
in that appendix (∗ix of the Logic of Scientific Discovery)
was originally published in three articles in The British
Journal for the Philosophy of Science (Popper 1954, 1957,
1958). Moreover, Popper discussed his formal definition
of degree of corroboration in the main texts of Conjectures
and Refutations (Popper 1962, Chapter 11) and Realism
and the Aim of Science (Popper 1983, Chapter 4). Given
the widespread use of probabilistic approaches in
science, it is not at all surprising that Popper would
develop a philosophy of science that encompasses such
approaches. In Popper’s own words, “… I now think
that it is possible to define ‘degree of corroboration’ in
such a way that we can compare degrees of corroboration
[of alternative hypotheses]. Moreover, this definition
makes it even possible to attribute numerical degrees
of corroboration to statistical hypotheses” (Popper 1959,
p. 268).

The arguments presented here and previously (de
Queiroz and Poe 2001, 2003; de Queiroz 2004) bear
on both of the main debates concerning Karl Popper’s
philosophy of science in the discipline of systematic
biology. With regard to disagreements about the
relevance of Popper’s philosophy to contemporary
phylogenetics, they demonstrate that Popper’s concept
of degree of corroboration most certainly is relevant in
that it is exemplified by methods developed and used
by phylogeneticists. As argued here and previously (de
Queiroz 2004), PTP tests (Faith and Cranston 1991) and
tree length distribution skewness tests (Hillis 1991; Hillis
and Huelsenbeck 1992) embody the spirit of Popper’s
concept of degree of corroboration by assessing test

severity, and analogous likelihood-based resolution tests
(e.g., Ota et al. 1999, 2000) involve direct comparisons of
p(e|hb) and p(e|b)—the two fundamental components of
C. This conclusion bears in turn on the debate concerning
the consistency of parsimony versus likelihood methods
with Popper’s philosophy. It reveals that any optimality-
criterion-based phylogenetic method can be reconciled
with Popper’s concept of degree of corroboration by
employing methods that evaluate test severity, such as
PTP, skewness, and resolution tests. Consequently, there
is little point in attempting to use Popper’s philosophy
to argue for the superiority of one optimality criterion
over another. In any case, the evaluation of test severity
based on p(e|b) is a critical component of the logic of
science described by Popper, and the realization that
in phylogenetics p(e|b) corresponds to the likelihood of
an unresolved tree (de Queiroz 2004) is important for
understanding how phylogenetics relates to Popperian
philosophy.
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