At: 23:25 10 November 2008

[Oregon State University]

Downloaded By:

COMMUN. STATIST.—SIMULA., 27(3), 711-734 (1998)

METHODS OF VARIABLE SELECTION IN
REGRESSION MODELING

Paul A. Murtaugh

Department of Statistics
Oregon State University
Corvallis, Oregon 97331

Key Words: Bayes information criterion; Mallows’ C,, statistic; multiple linear
regression; regression tree; stepwise regression

ABSTRACT

Simulation was used to evaluate the performances of several methods of
variable selection in regression modeling: stepwise regression based on partial
F-tests, stepwise minimization of Mallows’ C, statistic and Schwarz’s Bayes
Information Criterion (BIC), and regression trees constructed with two kinds
of pruning. Five to 25 covariates were generated in multivariate clusters, and
responses were obtained from an ordinary linear regression model involving
three of the covariates; each data set had 50 observations. The regression-
tree approaches were markedly inferior to the other methods in discriminating
between informative and noninformative covariates, and their predictions of
responses in “new” data sets were much more variable and less accurate than
those of the other methods. The F-test, C, and BIC approaches were similar
in their overall frequencies of “correct” decisions about inclusion or exclusion

of covariates, with the C, method leading to the largest models and the BIC
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method to the smallest. The three methods were also comparable in their
ability to predict “new” observations, with perhaps a tendency for the C,
approach to perform relatively more poorly for large covariate pools. The
abilities of all methods to discriminate between informative and noninforma-
tive covariates and to predict “new” observations decreased with increasing

size of the covariate pool.

1 Introduction

Regression modeling is a ubiquitous tool in science, with interest usually fo-
cusing on prediction of some response from measured values of one or more
covariates, or on assessment of the strength of association between the re-
sponse and the covariates. Methods of regression have been well developed
for a variety of types of responses (e.g., see Weisberg 1985, McCullagh and
Nelder 1989, Kalbfleisch and Prentice 1980).

A challenge in all types of regression is deciding which elements from a
large pool of potential covariates are most suitable for inclusion in a predic-
tive model of the response. A variety of methods is available for selecting
such subsets. The methods differ in the algorithms used to identify subsets
(e.g., forward, backward and stepwise regression, or enumeration of all pos-
sible subsets), as well as in the criteria used to judge the goodness-of-fit of
candidate models (e.g., F-test, Mallows’ C,, or the Bayes Information Crite-
rion). Inclusion of too few predictors will lead to bias, and inclusion of too
many predictors will cause loss of precision in the estimation of regression co-
efficients and the prediction of new responses. These methods and issues are
well discussed in many modern statistics texts (e.g., Draper and Smith 1981,
Fisher and van Belle 1993, Ramsey and Schafer 1997), and the area of model
selection is a central theme of statistical research (Linhart and Zucchini 1986,
Miller 1990, Lehmann 1990, Cox 1990).

Here I use simulation to evaluate several methods of variable selection —

three based on ordinary linear regression and two based on regression trees
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(Breiman et al. 1984). I focus on the abilities of the different methods to
discriminate between meaningful predictors and useless noise variables, and
to identify the models that best predict future observations. Some data on
the species richness of zooplankton in lakes (Dodson 1992) are used as an

example of application of the different methods.

2 Methods

2.1 Simulation of data

In each simulated data set, values of covariates were randomly generated from
multivariate distributions. The intent was to mimic the tendency in real data
sets for predictors to occur as clusters of related variables. The following

mutually-independent sets of predictors were generated:

1. aset of correlated, continuous predictors, X, X, ..., Xk, such that each
X; ~ N(u,7%) and Cor (X;, X;) = p for i # j;

2. another set of predictors generated as above, labeled Wy, W, ..., W,;

3. a set of correlated, binary predictors, V4, V4, ..., Vi, obtained by gener-
ating k correlated, normal random variables as above and transforming
them to 0’s or 1’s, according to whether their values were less than or

greater than y;

4. a set of mutually-independent, continuous predictors, Zi,Z,,..., Z,
such that each Z; ~ N(p,7?); and

5. a set of mutually-independent, binary predictors, Zyy1, Zks2, ..., Zok,
generated by transforming continuous predictors as in (4) to 0’s or 1’s,
according to whether they were less than or greater than u.

In all of the simulations, g = 10, 72 = 2, and p = 0.5. Five sizes of co-
variate “pools” were simulated: k = 1,...,5, corresponding to 5, 10, ..., 25

covariates total.
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Responses were generated from the above predictors according to the fol-

lowing model:
Y =8+ B X1+ BuWi + ﬂuvl + €, (1)

where the 3’s are regression coefficients and € ~ N(0,0?) represents random
error. Default values were 5 = 0, 8, = 0.3, 8, = 0.2, 8, =1, and 0? = 1,
and n = 50 responses were simulated in each data set. A single simulation
consisted of applying the various analysis techniques to 500 simulated data
sets.

Equation (1) implies that there are three clusters of potentially informa-
tive covariates (the X’s, W’s and V’s), but, in each cluster, only one of the
predictors has a true, functional relationship with the response. Nevertheless,
by virtue of their correlation with the key predictor, the other members of
the cluster have indirect associations with the response that could lead them
to be selected in regression modeling.

The Z variables, which Equation (1) shows are unrelated to the response
Y, are included to mimic the tendency for real data sets to contain noninfor-

mative covariates.

2.2 Methods of variable selection

The following methods of variable selection were evaluated, with shorthand
labels in boldface:

o F-test: stepwise multiple linear regression with F-tests. Starting with a
model having no predictors, we add the covariate achieving the most sta-
tistically significant (P < 0.05) reduction of the residual sum of squares.
This procedure is repeated in subsequent steps, and, at each step, any
predictor in the model whose association with the response becomes
non-significant is dropped. Statistical significance is judged from the

usual partial F statistic (e.g., see Draper and Smith 1981).
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e C,: stepwise selection based on Mallows’ C,. For a linear regression

model having p regression coefficients based on n observations, Mallows’

C, statistic is defined as

& — &%
= (2)

Co=p+(n—p)- o)

where 62 is the mean squared error for the model and 6% is the mean
squared error for a “full” model containing all possible predictors. Start-
ing with a model having no predictors, a stepwise procedure is used to
add or delete predictors until a minimum value of C, is obtained {e.g.,
see p. 175 of Venables and Ripley 1994). In actual practice, the analyst
would be wise to consider the relationship between C, and the number
of regression coefficients in the model, p, since models for which C, > p
are likely to produce biased predictions (e.g., see Fisher and van Belle
1993).

I also experimented with all-subset regression by leaps and bounds, to
minimize the C, statistic. This method uses a computational trick to
identify the best few subsets of predictors in linear regression models,
without having to perform most of the possible regressions (e.g., see
Weisberg 1985). I used the “leaps” function in the S+ language (Becker
et al. 1988, Statistical Sciences Inc. 1993), which is based on the algo-
rithm of Furnival and Wilson (1974). Since the results of this method
of model selection were quite similar to those of the stepwise procedure

described above, I do not report the all-subset results in great detail.

BIC: stepwise selection based on Schwarz’s Bayes Information Crite-
rion. A stepwise procedure is used as above to construct linear regres-

sion models, but the criterion that is minimized is
BIC = nlog(6?%) + plog(n) . (3)

This form of the statistic is due to Schwarz (1978). Model selection
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using the BIC is discussed by Ramsey and Schafer (1997), and a more
technical treatment may be found in Kass and Raftery (1995).

o Regression trees are decision trees for predicting a response based on
successive binary splits of independent variables (Breiman et al. 1984).
Trees are “pruned” to avoid over-fitting the training data. Two methods

of pruning are used here:

AIC-tree: an approach designed to minimize an approximation
to Akaike’s information criterion (Venables and Ripley 1994). The
a of the cost-complexity measure of Breiman et al. (1984) is set
equal to 26%, where 6% is the mean squared error from a linear

regression model including all possible predictors.

CV-tree: an approach based on cross-validation, in which the
data set is split into 10 parts. Nine parts are used to grow a tree,
which is then tested on the tenth; this is done ten ways. The final
tree is obtained by pruning the original tree back to the number
of nodes at which the average of the cross-validated deviances is a

minimum.

The S+ language (version 3.4) was used for the growing and pruning of
regression trees, as described by Venables and Ripley (1994).

Except for the second regression-tree method described above, I did not
explore the use of resampling in conjunction with the subset selection proce-
dures. Breiman and Spector (1992) found in simulation studies that cross-

validation and bootstrapping can greatly reduce bias in subset selection.

2.3 Assessment of predictive ability

For each of the 500 models obtained with a particular variable-selection pro-
cedure in a simulation, I calculated the predicted response for a single hy-
pothetical observation having mean covariate values, i.e., X; = -+ = X =
Wi==Wi=Z==2Z=10,and V==V =Zpyy = =
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Zy = 0.5. The distribution of those predictions about the expected value of
the response yields information about the bias and variability of predictions
made by that method.

The ability of regression and regression-tree models to predict “future”
observations having different sets of covariate values was assessed by further
simulations. For each size of covariate pool (k = 1,...,5), the following steps

were taken:

1. Assemble the predictive models from the five variable-selection tech-
niques applied to the 500 “training” data sets (i.e., sets of covariates

and responses generated as described earlier).

2. Generate 200 “new” data sets consisting of covariates and responses
p

generated by the same mechanisms used to obtain the training data.

3. For each new data set and variable-selection technique, use the 500
models based on the training data sets to predict responses for the new

data set.

4., Summarize the agreement between the observed responses in the new
data set and those predicted by each of the 500 models using the mean
squared error of the predictions (MSE) and the sample correlation of
predicted and observed responses (R):

08

MSE %0 ;

R = 2 -7)(F-Y) (4)

VIR (V- PR (V- Py

where Y is the predicted and ¥; the observed response for subject i, ¥ is
the mean of the 50 observations in the new data set, and Y is the mean
of the 50 predicted responses. (These means are identical for regression

models, but not for the regression-tree models.)
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5. Average the goodness-of-fit measures in Equations (4) over the 500 pre-
dictive models available for each variable-selection method, and sum-
marize the predictive ability of each method as the distribution of those

averages over the 200 new data sets.

3 Results of Simulations

3.1 Numbers and types of covariates selected

Figure 1 shows the average number of covariates selected by the various ap-
proaches; recall that there are three truly informative covariates in all cases.
The C, and AIC-tree methods consistently select more covariates than the F-
test, BIC and CV-tree approaches. For all methods except the CV-tree, the
number of covariates selected increases with the size of the pool of covariates
being selected from.

The proportions of models that are “correct” (i.e., that include only the
three informative covariates, X;, W; and V}) are shown in Figure 2. For the
smallest covariate pools, the C, and F-test methods do best at identifying the
correct model, while, for larger pools, the F-test and BIC approaches are best
— although the overall success rate is quite low.

Figure 3 shows probabilities of various predictors being included in models
produced by the different methods. For the informative covariates (X, W
and V;), the C, method usually has the highest inclusion probabilities, and the
CV-tree method has the lowest. For the two informative continuous predictors
(X, and W), the AIC-tree method has fairly high inclusion probabilities,
and the F-test and BIC methods have intermediate inclusion probabilities.
Interestingly, the two regression-tree approaches select the informative binary
predictor (V;) markedly less often than do the other three methods. For all
methods, the inclusion probabilities for informative predictors decrease as the
size of the covariate pool increases — presumably because of an increase in
the chance for correlated, surrogate covariates to be selected instead. This

decrease seems especially pronounced for the regression-iree approaches.
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FIG. 1. Average number of covariates included in statistical models vs. size
of the pool of available covariates (5, 10, 15, 20, or 25). Each point is an

average from 500 simulated data sets.

For the noninformative covariates (2’s), the F-test and BIC methods gen-
erally have inclusion probabilities close to 0.05, while the C, method yields
substantially elevated inclusion probabilities (Figure 3). The AIC-tree ap-
proach includes noninformative continuous covariates with greater frequency

than do the other methods, especially for small covariate pools, and its inclu-
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FIG. 2. Proportions of models fit to simulated data sets that are “correct”

(i.e., contain only X;, W; and W) vs. size of covariate pool.

sion of noninformative binary covariates is greater than that of all the other
methods except the C, approach.

Figure 4 is one possible summary of the trade-off between inclusion of
informative covariates and exclusion of noninformative covariates that occurs
across different methods of variable selection. For all methods, as the size of

the covariate pool increases, the average probability of including an informa-
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FIG. 3. Probabilities of including various covariates vs. size of the covariate
pool. The plot labeled Z.CTS shows probabilities averaged over the k con-
tinuous, noninformative covariates, and Z.BIN represents averages over the k
binary, noninformative covariates. Plots for the “semi-informative” covariates
— X2y .o s Xy Way o .., Wi, i, ..., Vi (not shown) — have patterns similar to
those for the noninformative covariates, but with slightly higher inclusion

probabilities overall.
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FIG. 4. Average probability of including an informative covariate (X1,
Wi, Vi) vs. average probability of excluding a noninformative covariate
(21,...Za). The points on each line correspond to the different-sized covari-
ate pools, from five covariates (uppermost point) to 25 covariates (lowermost
point). Each point is based on 500 simulated data sets.
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tive covariate decreases, as seen earlier. The average probability of excluding a
noninformative covariate is insensitive to the size of the covariate pool for the
C,, F-test and BIC methods, but increases dramatically with covariate-pool
size for the two regression-tree approaches.

The C, procedure has a relatively high probability of including an informa-
tive covariate, but a low probability of excluding a noninformative covariate
(Figure 4). The F-test and BIC approaches “miss” informative covariates
more frequently, but have a better chance of excluding noninformative covari-
ates. The AIC-tree method includes informative covariates with reasonably
high probability, but also has a high rate of inclusion of noninformative co-
variates. The CV-tree method is good at excluding noninformative covariates,
but quite poor at including informative ones.

Which method is “best” depends on the relative costs of making the two
possible kinds of errors (omitting informative covariates and including nonin-
formative ones). If ¢ is the cost, or loss, accompanying the first kind of error,

and c; the loss accompanying the second, we can write the expected loss as

Expected loss = ¢; - Pr (omitting an informative covariate) +

¢z + Pr (including a noninformative covariate) . (5)

Figure 5 shows the expected losses for the five methods, given that the
two kinds of errors are equally costly (i = ¢; = 0.5). In this case, the F-
test and C, approaches minimize the loss; the BIC method has a slightly
higher expected loss; and the regression-tree approaches are clearly inferior
to the other methods. Different values of ¢; and c;, reflecting different costs
of errors of omission and commission, would shift the balance among the
different methods. It should also be realized that this loss analysis is specific
to the definition of the errors implied by Figure 4. We might consider the
trade-off between differently-defined errors, e.g., substitute Pr (af least one
informative covariate excluded) and Pr (at least one noninformative covariate
included) in Equation (5).

It is worth noting here that, in all of the simulations, the stepwise C,

procedure performed similarly to a leaps-and-bounds procedure to minimize
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FIG. 5. Expected loss (with errors as implied by Figure 4, and ¢; = ¢; = 0.5

in Equation 5) for the five variable-selection methods, vs. size of covariate

pool.
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the C, statistic. The leaps procedure yielded slightly higher inclusion prob-
abilities for all covariates, but the two approaches chose identical models for
65% (25-covariate pool) to 99.6% (five-covariate pool) of the simulated data
sets. The leaps-and-bounds algorithm effectively considers a larger universe
of models than does the stepwise approach, but this does not result in a
practically important difference in the nature of the models selected.

3.2 Prediction

Table I summarizes the results of using models based on simulated data sets to
predict the response for a hypothetical observation having average covariate
values. The three methods based on least-squares regression all appear to
give unbiased estimates of the true response (5.5), but the regression-tree
predictions are biased slightly upwards. More important, the average standard
deviations of predictions from regression trees are 3.3 (CV-tree) to 4.5 (AIC-
tree) times those for the other three methods.

Figure 6 shows the results of using the 500 models fit to simulated data
sets to predict responses in 200 “new” data sets generated by the same mech-
anism. By any criterion, the regression-tree approaches do a poor job of
predicting new observations, compared to the other three methods. There is
a suggestion for large covariate pools that the mean squared error of predic-
tion (see Equations 4) is higher for the C, method than for the F-test and BIC
approaches, although this difference is less evident in the sample correlations
of predicted and actual responses. For all methods, the predictive ability of

the models decreases as the size of the covariate pool increases.

4 An example with real data

I illustrate the different variable-selection techniques using data on the species
richness of zooplankton communities in lakes (Dodson 1992). Eight covari-
ates, some of which are strongly correlated, relate to lake size, location, and
proximity to other lakes (see Table II). I modeled the species richness in 66
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TABLE I

Prediction of response (true value = 5.5) for an observation having average covariate
values. The overall mean is the average of the means from the five sizes of covariate
pools, each of which involved 500 simulated data sets, and the average standard

deviation is similarly averaged over covariate-pool sizes and simulated data sets.

Overall Average
Method  mean standard deviation
F-test 5.501 0.161
C, 5.502 0.161
BIC 5.500 0.162
AIC-tree  5.836 0.725
CV-tree  5.740 0.536

North American lakes by applying different variable-selection techniques to

the covariates listed in Table II, and then assessed the predictive ability of
these models for a separate set of 37 lakes located in Europe and Asia (Dodson
1991, 1992).

Table III shows the results of the model building. At least four distinct
models are obtained: three involving the covariates AREA, ELEV and NEAR,
and one involving those three covariates plus LAT and L2. The AIC-based
regression tree fit to the 66 North American lakes is shown in Figure 7. In
this example, the regression-tree approaches lead to the highest correlations
between species-richness values predicted and observed for the 37 Eurasian
lakes, but confidence intervals for the correlation coefficients overlap substan-
tially among methods.

Working with 38 North American lakes having complete data for a larger
set of covariates than that shown in Table II, Dodson (1992) used a form of
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FIG. 6. Predictive ability of models fit to simulated data sets, as measured
by (a) the mean squared error of predicted values about the true values, and
(b) the sample correlation of predicted and true values (see Equations 4). For
each of 200 “new” data sets, the measures were averaged over predictions
from models fit to 500 “training” data sets; the plotted points are the means
of these 200 averages. Averages (and ranges) of the widths of 95% confidence
intervals about the 25 plotted points are 0.059 (0.054 to 0.070) for the MSE,
and 0.020 (0.013 to 0.026) for the correlation coefficient.
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TABLE II

Covariates used to predict zooplankton species richness in the lakes discussed by
Dodson (1992). Logarithmic transformations were used to reduce skewness in the

distributions of the response (SPP) and covariates.

Variable Transformation
label Meaning used

SPP Species richness log(SPP)
AREA  Surface area (m?) log(AREA)
ZBAR  Mean depth (m) log(ZBAR)
ZMAX  Maximum depth (m) log(ZMAX)
ELEV  Elevation (m) ELEV

LAT Latitude LAT

NEAR Distance to nearest lake (km) log(NEAR + 1)
L1 Number of lakes within 10 km log(L1 + 1)

L2 Number of lakes between 10 and 20 km log(L2 + 1)
LW20  Number of lakes within 20 km log(LW20)

stepwise multiple linear regression to obtain a final model expressing species
richness as an increasing function of area and number of lakes within 20 km
(LW20), and a quadratic function of photosynthetic flux. I chose to exclude
photosynthetic flux from the covariate pool, because it was not available for
the Eurasian lakes on which I wanted to test the models. This example
illustrates how the different methods of variable selection can lead to quite

different models, with potentially different predictive abilities.

5 Discussion

All of the variable-selection techniques become increasingly challenged as the

size of the covariate pool increases, leading to larger numbers of covariates
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TABLE III

Models of zooplankton species richness obtained by the different variable-selection
techniques, and results of predicting species richness for an independent set of 37
Eurasian lakes. The tranformations shown in Table I1I were used for both the
response {(SPP) and the covariates. The MSE and correlation coefficient measure
the agreement between predicted and observed responses in the Eurasian lakes (see
Equations 4). Numerical results for the CV-tree approach are average values from
10 runs of the cross-validation-based pruning method; seven of the final trees used
all three listed covariates, while three trees did not use NEAR.

Prediction for

Eurasian lakes

Method Regression equation MSE Correlation
F-test, BIC SPP = 1.55 + 0.080 AREA - 0.00015 ELEV

- 0.348 NEAR 0.32 0.57
Cy SPP = 2.07 + 0.073 AREA - 0.00018 ELEV

- 0.0153 LAT - 0.346 NEAR + 0.072L2 0.34 0.57
AIC-tree SPP = AREA + ELEV + NEAR 0.28 0.65

CV-tree  SPP = AREA + ELEV ( + NEAR) 0.27 0.66

selected (Figure 1) and increasing rates of omission of informative covariates
(Figure 3). The challenge of building parsimonious models when the number
of potential parameters is large has been widely recognized (e.g., see Derksen
and Keselman 1992, Anderson et al. 1994), and has led to rules-of-thumb
such as Harrell’s (1996) suggestion that the number of covariates in the pool
should be no more than a tenth of the number of available observations.
The regression-tree approach can lead to quite different models, depend-

ing on the pruning method used (see Figures 1 and 3). The AIC-tree method
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FIG. 7. Regression tree for the data on zooplankton species richness in

66 North American lakes. All numbers are on the tranformed scales shown
in Table II. The numbers in the intermediate (oval) nodes and the terminal

(rectangular) nodes, or “leaves”, represent predicted values of log(SPP).
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produces large models, including many noninformative covariates, while the
CV-tree method produces smaller models, frequently omitting important pre-
dictors. Interestingly, the informative binary covariate, V4, is included consis-
tently less often by both of the regression-tree approaches than by the other
methods (Figure 3) — even though regression trees are based on successive
binary splits of independent variables.

The stepwise method to minimize Mallows’ C,, statistic generally includes
more covariates, informative and noninformative, than do the F-test and BIC
approaches (Figures 1-4). Which approach is “best” depends on the relative
costs of omitting important predictors and including noninformative ones.
For the particular data structure modeled here, and for errors and costs as
defined in the text, the regression-tree approaches are uniformly inferior to
the other three approaches, and the F-test and C, approaches enjoy a slight
advantage over the BIC method (Figure 5).

For many applications of regression modeling, the “acid test” of the value
of a model is how well it predicts new observations. For a constant covariate
vector, the models fit to simulated data by the regression-tree approaches give
somewhat biased “predictions” of the response, which are much more variable
than those from the other three methods (Table 1). In spite of the different
numbers of covariates ending up in the models, the other three methods do
not differ substantially in the variability of their predictions for a constant
covariate vector.

When we consider prediction for entirely new data sets, the regression-
tree approaches are again substantially inferior to the other three approaches
(Figure 6). The other three approaches are similar with respect to mean
squared prediction error and the correlation between predicted and observed
responses, although there is a suggestion that the F-test and BIC approaches
may be preferable to the C, method for large covariate pools (see Figure 6a).

The inferiority of the regression-tree approaches in this study is perhaps
not surprising, given that the data were generated according to an ordinary

linear regression model (Equation 1) — the “home turf” of the F-test, C,




At: 23:25 10 November 2008

[Oregon State University]

Downloaded By:

732 MURTAUGH

and BIC approaches. Regression trees might be expected to perform much
better when covariate effects are nonlinear or discontinuous, or when there are
important interactions among covariates. In addition, the sample size in the
data sets simulated here (50) is quite small for the construction of regression
trees, given the sequential partitioning that is the basis of the method (Miller
1994). Still, the high variability (Table 1) and low accuracy (Figure 6) of
predictions of the regression-tree methods suggest that this tool may be best
reserved for exploratory data analysis, at least until the relative merits of
different kinds of pruning are better understood.

For the data structure used here, the F-test, C, and BIC methods are
fairly similar in their overall performance (Figures 5 and 6). One’s choice
of approach should be guided by the relative costs of the different kinds of
errors in model building. If errors of omission of covariates are especially
costly, the larger models produced by the C, method might be preferred to
the smaller models obtained by minimizing the BIC — and vice-versa if errors
of commission are costlier. Whatever method of variable selection is used,
the quality of models clearly decreases with increasing size of the covariate
pool, pointing to the importance of the investigator deciding a priori on a

manageable set of potentially informative covariates to use in model building.
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